King's College London

Research portal

Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma

Research output: Contribution to journalArticlepeer-review

Duaa O Khair, Heather Jane Bax, Silvia Mele, Silvia Crescioli, Giulia Pellizzari, Atousa Khiabany, Mano Nakamura, Robert John Harris, Elise French, Ricarda Melina Hoffmann, Iwan Philip Williams, Ka Ki Anthony Cheung, Benjamin Thair, Charlie T Beales, Emma Touizer, Adrian Wilhelm Signell, Nahrin L Tasnova, James Frederick Spicer, Debra Hannah Josephs, Jenny L. C. Geh & 5 more Alistair MacKenzie Ross, Ciaran Healy, Sophie Elinor Papa, Katie E. Lacy, Sophia N Karagiannis

Original languageEnglish
Article number453
JournalFrontiers in Immunology
Issue numberMAR
Early online date19 Mar 2019
Accepted/In press20 Feb 2019
E-pub ahead of print19 Mar 2019
Published19 Mar 2019


King's Authors


The immune system employs several checkpoint pathways to regulate responses, maintain homeostasis and prevent self-reactivity and autoimmunity. Tumor cells can hijack these protective mechanisms to enable immune escape, cancer survival and proliferation. Blocking antibodies, designed to interfere with checkpoint molecules CTLA-4 and PD-1/PD-L1 and counteract these immune suppressive mechanisms, have shown significant success in promoting immune responses against cancer and can result in tumor regression in many patients. While inhibitors to CTLA-4 and the PD-1/PD-L1 axis are well-established for the clinical management of melanoma, many patients do not respond or develop resistance to these interventions. Concerted efforts have focused on combinations of approved therapies aiming to further augment positive outcomes and survival. While CTLA-4 and PD-1 are the most-extensively researched targets, results from pre-clinical studies and clinical trials indicate that novel agents, specific for checkpoints such as A2AR, LAG-3, IDO and others, may further contribute to the improvement of patient outcomes, most likely in combinations with anti-CTLA-4 or anti-PD-1 blockade. This review discusses the rationale for, and results to date of, the development of inhibitory immune checkpoint blockade combination therapies in melanoma. The clinical potential of new pipeline therapeutics, and possible future therapy design and directions that hold promise to significantly improve clinical prognosis compared with monotherapy, are discussed.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454