TY - JOUR
T1 - Comparison between conduction system pacing and cardiac resynchronization therapy in right bundle branch block patients
AU - Strocchi, Marina
AU - Gillette, Karli
AU - Neic, Aurel
AU - Elliott, Mark K.
AU - Wijesuriya, Nadeev
AU - Mehta, Vishal
AU - Vigmond, Edward J.
AU - Plank, Gernot
AU - Rinaldi, Christopher A.
AU - Niederer, Steven A.
N1 - Funding Information:
This work was supported by the Wellcome/EPSRC Centre for Medical Engineering (WT 203148/Z/16/Z). SN is supported by NIH R01-HL152256, ERC PREDICT-HF 453 (864055), BHF (RG/20/4/34803), EPSRC (EP/P01268X/1).
Publisher Copyright:
Copyright © 2022 Strocchi, Gillette, Neic, Elliott, Wijesuriya, Mehta, Vigmond, Plank, Rinaldi and Niederer.
PY - 2022/9/21
Y1 - 2022/9/21
N2 - A significant number of right bundle branch block (RBBB) patients receive cardiac resynchronization therapy (CRT), despite lack of evidence for benefit in this patient group. His bundle (HBP) and left bundle pacing (LBP) are novel CRT delivery methods, but their effect on RBBB remains understudied. We aim to compare pacing-induced electrical synchrony during conventional CRT, HBP, and LBP in RBBB patients with different conduction disturbances, and to investigate whether alternative ways of delivering LBP improve response to pacing. We simulated ventricular activation on twenty-four four-chamber heart geometries each including a His-Purkinje system with proximal right bundle branch block (RBBB). We simulated RBBB combined with left anterior and posterior fascicular blocks (LAFB and LPFB). Additionally, RBBB was simulated in the presence of slow conduction velocity (CV) in the myocardium, left ventricular (LV) or right ventricular (RV) His-Purkinje system, and whole His-Purkinje system. Electrical synchrony was measured by the shortest interval to activate 90% of the ventricles (BIVAT-90). Compared to baseline, HBP significantly improved activation times for RBBB alone (BIVAT-90: 66.9 ± 5.5 ms vs. 42.6 ± 3.8 ms, p < 0.01), with LAFB (69.5 ± 5.0 ms vs. 58.1 ± 6.2 ms, p < 0.01), with LPFB (81.8 ± 6.6 ms vs. 62.9 ± 6.2 ms, p < 0.01), with slow myocardial CV (119.4 ± 11.4 ms vs. 97.2 ± 10.0 ms, p < 0.01) or slow CV in the whole His-Purkinje system (102.3 ± 7.0 ms vs. 75.5 ± 5.2 ms, p < 0.01). LBP was only effective in RBBB cases if combined with anodal capture of the RV septum myocardium (BIVAT-90: 66.9 ± 5.5 ms vs. 48.2 ± 5.2 ms, p < 0.01). CRT significantly reduced activation times in RBBB in the presence of severely slow RV His-Purkinje CV (95.1 ± 7.9 ms vs. 84.3 ± 9.3 ms, p < 0.01) and LPFB (81.8 ± 6.6 ms vs. CRT: 72.9 ± 8.6 ms, p < 0.01). Both CRT and HBP were ineffective with severely slow CV in the LV His-Purkinje system. HBP is effective in RBBB patients with otherwise healthy myocardium and Purkinje system, while CRT and LBP are ineffective. Response to LBP improves when LBP is combined with RV septum anodal capture. CRT is better than HBP only in patients with severely slow CV in the RV His-Purkinje system, while CV slowing of the whole His-Purkinje system and the myocardium favor HBP over CRT.
AB - A significant number of right bundle branch block (RBBB) patients receive cardiac resynchronization therapy (CRT), despite lack of evidence for benefit in this patient group. His bundle (HBP) and left bundle pacing (LBP) are novel CRT delivery methods, but their effect on RBBB remains understudied. We aim to compare pacing-induced electrical synchrony during conventional CRT, HBP, and LBP in RBBB patients with different conduction disturbances, and to investigate whether alternative ways of delivering LBP improve response to pacing. We simulated ventricular activation on twenty-four four-chamber heart geometries each including a His-Purkinje system with proximal right bundle branch block (RBBB). We simulated RBBB combined with left anterior and posterior fascicular blocks (LAFB and LPFB). Additionally, RBBB was simulated in the presence of slow conduction velocity (CV) in the myocardium, left ventricular (LV) or right ventricular (RV) His-Purkinje system, and whole His-Purkinje system. Electrical synchrony was measured by the shortest interval to activate 90% of the ventricles (BIVAT-90). Compared to baseline, HBP significantly improved activation times for RBBB alone (BIVAT-90: 66.9 ± 5.5 ms vs. 42.6 ± 3.8 ms, p < 0.01), with LAFB (69.5 ± 5.0 ms vs. 58.1 ± 6.2 ms, p < 0.01), with LPFB (81.8 ± 6.6 ms vs. 62.9 ± 6.2 ms, p < 0.01), with slow myocardial CV (119.4 ± 11.4 ms vs. 97.2 ± 10.0 ms, p < 0.01) or slow CV in the whole His-Purkinje system (102.3 ± 7.0 ms vs. 75.5 ± 5.2 ms, p < 0.01). LBP was only effective in RBBB cases if combined with anodal capture of the RV septum myocardium (BIVAT-90: 66.9 ± 5.5 ms vs. 48.2 ± 5.2 ms, p < 0.01). CRT significantly reduced activation times in RBBB in the presence of severely slow RV His-Purkinje CV (95.1 ± 7.9 ms vs. 84.3 ± 9.3 ms, p < 0.01) and LPFB (81.8 ± 6.6 ms vs. CRT: 72.9 ± 8.6 ms, p < 0.01). Both CRT and HBP were ineffective with severely slow CV in the LV His-Purkinje system. HBP is effective in RBBB patients with otherwise healthy myocardium and Purkinje system, while CRT and LBP are ineffective. Response to LBP improves when LBP is combined with RV septum anodal capture. CRT is better than HBP only in patients with severely slow CV in the RV His-Purkinje system, while CV slowing of the whole His-Purkinje system and the myocardium favor HBP over CRT.
KW - cardiac resynchronization therapy
KW - conduction system pacing
KW - dyssynchrony
KW - heart failure
KW - his bundle pacing
KW - left bundle pacing
KW - right bundle branch block
UR - http://www.scopus.com/inward/record.url?scp=85140591022&partnerID=8YFLogxK
U2 - 10.3389/fphys.2022.1011566
DO - 10.3389/fphys.2022.1011566
M3 - Article
AN - SCOPUS:85140591022
SN - 1664-042X
VL - 13
JO - Frontiers in Physiology
JF - Frontiers in Physiology
M1 - 1011566
ER -