TY - JOUR
T1 - Comprehensive analysis of the major histocompatibility complex in systemic sclerosis identifies differential HLA associations by clinical and serological subtypes
AU - Acosta-Herrera, Marialbert
AU - Kerick, Martin
AU - Lopéz-Isac, Elena
AU - Assassi, Shervin
AU - Beretta, Lorenzo
AU - Simeón-Aznar, Carmen Pilar
AU - Ortego-Centeno, Norberto
AU - Proudman, Susanna M.
AU - Hunzelmann, Nicolas
AU - Moroncini, Gianluca
AU - De Vries-Bouwstra, Jeska K.
AU - Orozco, Gisela
AU - Barton, Anne
AU - Herrick, Ariane L.
AU - Terao, Chikashi
AU - Allanore, Yannick
AU - Brown, Matthew A.
AU - Radstake, Timothy R.D.J.
AU - Fonseca, Carmen
AU - Denton, Christopher P.
AU - Mayes, Maureen D.
AU - Martin, Javier
N1 - Funding Information:
Funding This work was supported by the Spanish Ministry of Science and Innovation (grant ref. SAF2015-66761-P and RTI20181013 (32-B-100)), Red de Investigación en Inflamación y Enfermedades Reumáticas from Instituto de Salud Carlos III (RD16/0012/0013) and grants from National Institutes of Health (R01AR073284) and DoD (W81XWH-16-1-0296). MAH was funded by the Spanish Ministry of Science and Innovation through the Juan de la Cierva Incorporacion program (ref. IJC2018-035131-I). GO, AB and ALH were supported by the NIHR Manchester Biomedical Research Centre and Versus Arthritis (grant ref 21754).
Publisher Copyright:
©
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/8/1
Y1 - 2021/8/1
N2 - Objective: The greatest genetic effect reported for systemic sclerosis (SSc) lies in the major histocompatibility complex (MHC) locus. Leveraging the largest SSc genome-wide association study, we aimed to fine-map this region to identify novel human leucocyte antigen (HLA) genetic variants associated with SSc susceptibility and its main clinical and serological subtypes. Methods: 9095 patients with SSc and 17 584 controls genome-wide genotyped were used to impute and test single-nucleotide polymorphisms (SNPs) across the MHC, classical HLA alleles and their composite amino acid residues. Additionally, patients were stratified according to their clinical and serological status, namely, limited cutaneous systemic sclerosis (lcSSc), diffuse cutaneous systemic sclerosis (dcSSc), anticentromere (ACA), antitopoisomerase (ATA) and anti-RNApolIII autoantibodies (ARA). Results: Sequential conditional analyses showed nine SNPs, nine classical alleles and seven amino acids that modelled the observed associations with SSc. This confirmed previously reported associations with HLA-DRB1∗11:04 and HLA-DPB1∗13:01, and revealed a novel association of HLA-B∗08:01. Stratified analyses showed specific associations of HLA-DQA1∗02:01 with lcSSc, and an exclusive association of HLA-DQA1∗05:01 with dcSSc. Similarly, private associations were detected in HLA-DRB1∗08:01 and confirmed the previously reported association of HLA-DRB1∗07:01 with ACA-positive patients, as opposed to the HLA-DPA1∗02:01 and HLA-DQB1∗03:01 alleles associated with ATA presentation. Conclusions: This study confirms the contribution of HLA class II and reveals a novel association of HLA class I with SSc, suggesting novel pathways of disease pathogenesis. Furthermore, we describe specific HLA associations with SSc clinical and serological subtypes that could serve as biomarkers of disease severity and progression.
AB - Objective: The greatest genetic effect reported for systemic sclerosis (SSc) lies in the major histocompatibility complex (MHC) locus. Leveraging the largest SSc genome-wide association study, we aimed to fine-map this region to identify novel human leucocyte antigen (HLA) genetic variants associated with SSc susceptibility and its main clinical and serological subtypes. Methods: 9095 patients with SSc and 17 584 controls genome-wide genotyped were used to impute and test single-nucleotide polymorphisms (SNPs) across the MHC, classical HLA alleles and their composite amino acid residues. Additionally, patients were stratified according to their clinical and serological status, namely, limited cutaneous systemic sclerosis (lcSSc), diffuse cutaneous systemic sclerosis (dcSSc), anticentromere (ACA), antitopoisomerase (ATA) and anti-RNApolIII autoantibodies (ARA). Results: Sequential conditional analyses showed nine SNPs, nine classical alleles and seven amino acids that modelled the observed associations with SSc. This confirmed previously reported associations with HLA-DRB1∗11:04 and HLA-DPB1∗13:01, and revealed a novel association of HLA-B∗08:01. Stratified analyses showed specific associations of HLA-DQA1∗02:01 with lcSSc, and an exclusive association of HLA-DQA1∗05:01 with dcSSc. Similarly, private associations were detected in HLA-DRB1∗08:01 and confirmed the previously reported association of HLA-DRB1∗07:01 with ACA-positive patients, as opposed to the HLA-DPA1∗02:01 and HLA-DQB1∗03:01 alleles associated with ATA presentation. Conclusions: This study confirms the contribution of HLA class II and reveals a novel association of HLA class I with SSc, suggesting novel pathways of disease pathogenesis. Furthermore, we describe specific HLA associations with SSc clinical and serological subtypes that could serve as biomarkers of disease severity and progression.
KW - autoantibodies
KW - genetic
KW - immune complex diseases
KW - polymorphism
KW - systemic sclerosis
UR - http://www.scopus.com/inward/record.url?scp=85103652612&partnerID=8YFLogxK
U2 - 10.1136/annrheumdis-2021-219884
DO - 10.1136/annrheumdis-2021-219884
M3 - Article
AN - SCOPUS:85103652612
SN - 0003-4967
VL - 80
SP - 1040
EP - 1047
JO - Annals of the rheumatic diseases
JF - Annals of the rheumatic diseases
IS - 8
ER -