Computationally efficient neural network classifiers for next generation closed loop neuromodulation therapy - a case study in epilepsy

Ali Kavoosi*, Robert Toth, Moaad Benjaber, Mayela Zamora, Antonio Valentín, Andrew Sharott, Timothy Denison

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

4 Citations (Scopus)

Abstract

This work explores the potential utility of neural network classifiers for real- time classification of field-potential based biomarkers in next-generation responsive neuromodulation systems. Compared to classical filter-based classifiers, neural networks offer an ease of patient-specific parameter tuning, promising to reduce the burden of programming on clinicians. The paper explores a compact, feed - forward neural network architecture of only dozens of units for seizure-state classification in refractory epilepsy. The proposed classifier offers comparable accuracy to filter- classifiers on clinician-labeled data, while reducing detection latency. As a trade-off to classical methods, the paper focuses on keeping the complexity of the architecture minimal, to accommodate the on-board computational constraints of implantable pulse generator systems. Clinical relevance-A neural network-based classifier is presented for responsive neurostimulation, with comparable accuracy to classical methods at reduced latency.

Original languageEnglish
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages288-291
Number of pages4
ISBN (Electronic)9781728127828
DOIs
Publication statusPublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: 11 Jul 202215 Jul 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period11/07/202215/07/2022

Fingerprint

Dive into the research topics of 'Computationally efficient neural network classifiers for next generation closed loop neuromodulation therapy - a case study in epilepsy'. Together they form a unique fingerprint.

Cite this