Connections between Kac-Moody algebras and M-theory

Research output: Working paper/PreprintPreprint

17 Downloads (Pure)


We investigate some of the motivations and consequences of the conjecture that the Kac-Moody algebra E11 is the symmetry algebra of M-theory, and we develop methods to aid the further investigation of this idea. The definitions required to work with abstract root systems of Lie algebras are given in review leading up to the definition of a Kac-Moody algebra. The motivations for the E11 conjecture are presented and the nonlinear realisation of gravity relevant to the conjecture is described. We give a beginner's guide to producing the algebras of E11, relevant to M-theory, and K27, relevant to the bosonic string theory, along with their l1 representations are constructed. Reference tables of low level roots are produced for both the adjoint and l1 representations of these algebras. In addition a particular group element, having a generic form for all G+++ algebras, is shown to encode all the half-BPS brane solutions of the maximally oxidised supergravities. Special analysis is given to the role of space-time signature in the context of this group element and subsequent to this analysis spacelike brane solutions are derived from the same solution generating group element. Finally the appearance of U-duality charge multiplets from E11 is reviewed. General formulae for finding the content of arbitrary brane charge multiplets are given and the content of the particle and string multiplets in dimensions 4,5,6,7 and 8 is shown to be contained in the l1 representation of E11.
Original languageEnglish
Publication statusPublished - 22 Nov 2007


  • hep-th


Dive into the research topics of 'Connections between Kac-Moody algebras and M-theory'. Together they form a unique fingerprint.

Cite this