King's College London

Research portal

Control of Exercise Hyperpnoea: Contributions from Thin-Fibre Skeletal Muscle Afferents

Research output: Contribution to journalReview article

Original languageEnglish
Pages (from-to)1605-1621
Number of pages17
JournalExperimental Physiology
Issue number11
Early online date1 Nov 2019
E-pub ahead of print1 Nov 2019
Published1 Nov 2019


King's Authors


New Findings: What is the topic of this review? In this review, we examine the evidence for control mechanisms underlying exercise hyperpnoea, giving attention to the feedback from thin-fibre skeletal muscle afferents, and highlight the frequently conflicting findings and difficulties encountered by researchers using a variety of experimental models. What advances does it highlight? There has been a recent resurgence of interest in the role of skeletal muscle afferent involvement, not only as a mechanism of healthy exercise hyperpnoea but also in the manifestation of breathlessness and exercise intolerance in chronic disease. Abstract: The ventilatory response to dynamic submaximal exercise is immediate and proportional to metabolic rate, which maintains isocapnia. How these respiratory responses are controlled remains poorly understood, given that the most tightly controlled variable (arterial partial pressure of CO2/H+) provides no error signal for arterial chemoreceptors to trigger reflex increases in ventilation. This review discusses evidence for different postulated control mechanisms, with a focus on the feedback from group III/IV skeletal muscle mechanosensitive and metabosensitive afferents. This concept is attractive, because the stimulation of muscle mechanoreceptors might account for the immediate increase in ventilation at the onset of exercise, and signals from metaboreceptors might be proportional to metabolic rate. A variety of experimental models have been used to establish the contribution of thin-fibre muscle afferents in ventilatory control during exercise, with equivocal results. The inhibition of afferent feedback via the application of lumbar intrathecal fentanyl during exercise suppresses ventilation, which provides the most compelling supportive evidence to date. However, stimulation of afferent feedback at rest has no consistent effect on respiratory output. However, evidence is emerging for synergistic interactions between muscle afferent feedback and other stimulatory inputs to the central respiratory neuronal pool. These seemingly hyperadditive effects might explain the conflicting findings encountered when using different experimental models. We also discuss the increasing evidence that patients with certain chronic diseases exhibit exaggerated muscle afferent activation during exercise, resulting in enhanced cardiorespiratory responses. This might provide a neural link between the well-established limb muscle dysfunction and the associated exercise intolerance and exertional dyspnoea, which might offer therapeutic targets for these patients.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454