Controlling Meshes via Curvature: Spin Transformations for Pose-Invariant Shape Processing

Loïc Le Folgoc, Daniel C. Castro, Jeremy Tan, Bishesh Khanal, Konstantinos Kamnitsas, Ian Walker, Amir Alansary, Ben Glocker

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We investigate discrete spin transformations, a geometric framework to manipulate surface meshes by controlling mean curvature. Applications include surface fairing – flowing a mesh onto say, a reference sphere – and mesh extrusion – e.g., rebuilding a complex shape from a reference sphere and curvature specification. Because they operate in curvature space, these operations can be conducted very stably across large deformations with no need for remeshing. Spin transformations add to the algorithmic toolbox for pose-invariant shape analysis. Mathematically speaking, mean curvature is a shape invariant and in general fully characterizes closed shapes (together with the metric). Computationally speaking, spin transformations make that relationship explicit. Our work expands on a discrete formulation of spin transformations. Like their smooth counterpart, discrete spin transformations are naturally close to conformal (angle-preserving). This quasi-conformality can nevertheless be relaxed to satisfy the desired trade-off between area distortion and angle preservation. We derive such constraints and propose a formulation in which they can be efficiently incorporated. The approach is showcased on subcortical structures.
Original languageEnglish
Title of host publicationInformation Processing in Medical Imaging - 26th International Conference, IPMI 2019, Proceedings
EditorsSiqi Bao, James C. Gee, Paul A. Yushkevich, Albert C.S. Chung
Pages221-234
Number of pages14
DOIs
Publication statusE-pub ahead of print - 22 May 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11492 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Fingerprint

Dive into the research topics of 'Controlling Meshes via Curvature: Spin Transformations for Pose-Invariant Shape Processing'. Together they form a unique fingerprint.

Cite this