King's College London

Research portal

Cortical thickness correlates of minor neurological signs in patients with first episode psychosis

Research output: Contribution to journalArticle

Original languageEnglish
JournalSchizophrenia Research
Early online date18 May 2018
DOIs
Publication statusE-pub ahead of print - 18 May 2018

Documents

King's Authors

Abstract

Neurological soft signs (NSS) are subtle abnormalities of motor and sensory function that are present in the absence of localized brain pathological lesions. In psychoses they have been consistently associated with a distinct pattern of cortical and subcortical brain structural alterations at the level of the heteromodal cortex and basal ganglia. However, a more specific and accurate evaluation of the cytoarchitecture of the cortical mantle could further advance our understanding of the neurobiological substrate of psychosis.

We investigated the relationship between brain structure and NSS in a sample of 66 patients at their first episode of psychosis. We used the Neurological Evaluation Scale for neurological assessment and high-resolution MRI and Freesurfer to explore cortical thickness and surface area. Higher rates of NSS were associated with a reduction of cortical thickness in the precentral and postcentral gyri, inferior-parietal, superior temporal, and fusiform gyri. Higher rates of NSS were also associated with smaller surface areas of superior temporal gyrus and frontal regions (including middle frontal, superior and orbito-frontal gyri). Finally, more sensory integration signs were also associated with larger surface area of the latero-occipital region.

We conclude that the presence of NSS in psychosis is associated with distinct but widespread changes in cortical thickness and surface area, in areas crucial for sensory-motor integration and for the fluid execution of movement. Studying these morphological correlates with advanced neuroimaging techniques can continue to improve our knowledge on the neurobiological substrate of these important functional correlates of psychosis.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454