King's College London

Research portal

CytoASP: A Cytoscape app for qualitative consistency reasoning, prediction and repair in biological networks

Research output: Contribution to journalArticle

Aristotelis Kittas, Amélie Barozet, Jekaterina Sereshti, Niels Grabe, Sophia Tsoka

Original languageEnglish
JournalBmc Systems Biology
DOIs
Accepted/In press11 Jun 2015
Published11 Jul 2015

Documents

King's Authors

Abstract

Background: Qualitative reasoning frameworks, such as the Sign Consistency Model (SCM), enable modelling regulatory networks to check whether observed behaviour can be explained or if unobserved behaviour can be predicted. The BioASP software collection offers ideal tools for such analyses. Additionally, the Cytoscape platform can offer extensive functionality and visualisation capabilities. However, specialist programming knowledge is required to use BioASP and no methods exist to integrate both of these software platforms effectively. Results: We report the implementation of CytoASP, an app that allows the use of BioASP for influence graph consistency checking, prediction and repair operations through Cytoscape. While offering inherent benefits over traditional approaches using BioASP, it provides additional advantages such as customised visualisation of predictions and repairs, as well as the ability to analyse multiple networks in parallel, exploiting multi-core architecture. We demonstrate its usage in a case study of a yeast genetic network, and highlight its capabilities in reasoning over regulatory networks. Conclusion: We have presented a user-friendly Cytoscape app for the analysis of regulatory networks using BioASP. It allows easy integration of qualitative modelling, combining the functionality of BioASP with the visualisation and processing capability in Cytoscape, and thereby greatly simplifying qualitative network modelling, promoting its use in relevant projects.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454