Abstract
Attenuation correction is an essential requirement of positron emission tomography (PET) image reconstruction to allow for accurate quantification. However, attenuation correction is particularly challenging for PET-MRI as neither PET nor magnetic resonance imaging (MRI) can directly image tissue attenuation properties. MRI-based computed tomography (CT) synthesis has been proposed as an alternative to physics based and segmentation-based approaches that assign a population-based tissue density value in order to generate an attenuation map. We propose a novel deep fully convolutional neural network that generates synthetic CTs in a recursive manner by gradually reducing the residuals of the previous network, increasing the overall accuracy and generalisability, while keeping the number of trainable parameters within reasonable limits. The model is trained on a database of 20 pre-acquired MRI/CT pairs and a four-fold random bootstrapped validation with a 80:20 split is performed. Quantitative results show that the proposed framework outperforms a state-of-the-art atlas-based approach decreasing the Mean Absolute Error (MAE) from 131HU to 68HU for the synthetic CTs and reducing the PET reconstruction error from 14.3% to 7.2%.
Original language | English |
---|---|
Pages (from-to) | 61-70 |
Number of pages | 10 |
Journal | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
Volume | 11037 |
DOIs | |
Publication status | E-pub ahead of print - 12 Sept 2018 |
Event | 3rd International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2018 Held in Conjunction with 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018 - Granada, Spain Duration: 16 Sept 2018 → 16 Sept 2018 |