Abstract
BACKGROUND: Accurate interpretation of optical coherence tomography (OCT) pullbacks is critical for assessing vascular healing after percutaneous coronary intervention (PCI). Manual analysis is time-consuming and subjective, highlighting the need for a fully automated solution.
METHODS: In this study, 1148 frames from 92 OCT pullbacks were manually annotated to classify neointima as homogeneous, heterogeneous, neoatherosclerosis, or not analyzable on a quadrant level. Stent and lumen contours were annotated in 305 frames for segmentation of the lumen, stent struts, and neointima. We used these annotations to train a deep learning algorithm called DeepNeo. Performance was further evaluated in an animal model (male New Zealand White Rabbits) of neoatherosclerosis using co-registered histopathology images as the gold standard.
RESULTS: DeepNeo demonstrates a strong classification performance for neointimal tissue, achieving an overall accuracy of 75%, which is comparable to manual classification accuracy by two clinical experts (75% and 71%). In the animal model of neoatherosclerosis, DeepNeo achieves an accuracy of 87% when compared with histopathological findings. For segmentation tasks in human pullbacks, the algorithm shows strong performance with mean Dice overlap scores of 0.99 for the lumen, 0.66 for stent struts, and 0.86 for neointima.
CONCLUSIONS: To the best of our knowledge, DeepNeo is the first deep learning algorithm enabling fully automated segmentation and classification of neointimal tissue with performance comparable to human experts. It could standardize vascular healing assessments after PCI, support therapeutic decisions, and improve risk detection for cardiac events.
Original language | English |
---|---|
Article number | 124 |
Pages (from-to) | 124 |
Journal | Communications Medicine |
Volume | 5 |
Issue number | 1 |
DOIs | |
Publication status | Published - 17 Apr 2025 |