King's College London

Research portal

Deep molecular phenotypes link complex disorders and physiological insult to CpG methylation

Research output: Contribution to journalArticle

Shaza B Zaghlool, Dennis O Mook-Kanamori, Sara Kader, Nisha Stephan, Anna Halama, Rudolf Engelke, Hina Sarwath, Eman K Al-Dous, Yasmin A Mohamoud, Werner Roemisch-Margl, Jerzy Adamski, Gabi Kastenmüller, Nele Friedrich, Alessia Visconti, Pei-Chien Tsai, Tim Spector, Jordana Bell, Mario Falchi, Annika Wahl, Melanie Waldenberger & 7 more Annette Peters, Christian Gieger, Maija Pezer, Gordan Lauc, Johannes Graumann, Joel A Malek, Karsten Suhre

Original languageEnglish
JournalHuman Molecular Genetics
Early online date8 Jan 2018
DOIs
Accepted/In press2 Jan 2018
E-pub ahead of print8 Jan 2018

King's Authors

Abstract

Epigenetic regulation of cellular function provides a mechanism for rapid organismal adaptation to changes in health, lifestyle, and environment. Associations of cytosine-guanine di-nucleotide (CpG) methylation with clinical endpoints that overlap with metabolic phenotypes suggest a regulatory role for these CpG sites in the body's response to disease or environmental stress. We previously identified 20 CpG sites in an epigenome-wide association study (EWAS) with metabolomics that were also associated in recent EWASs with diabetes-, obesity-, and smoking-related endpoints. To elucidate the molecular pathways that connect these potentially regulatory CpG sites to the associated disease or lifestyle factors, we conducted a multi-omics association study including 2,474 mass-spectrometry based metabolites in plasma, urine, and saliva, 225 NMR based lipid and metabolite measures in blood, 1,124 blood-circulating proteins using aptamer technology, 113 plasma protein N-glycans and 60 IgG-glyans, using 359 samples from the multi-ethnic Qatar Metabolomics Study on Diabetes (QMDiab). We report 138 multi-omics associations at these CpG sites, including diabetes biomarkers at the diabetes-associated TXNIP locus, and smoking-specific metabolites and proteins at multiple smoking-associated loci, including AHRR. Mendelian randomization suggests a causal effect of metabolite levels on methylation of obesity associated CpG sites, i.e. of glycerophospholipid PC(O-36:5), glycine, and a very low density lipoprotein (VLDL-A) on the methylation of the obesity-associated CpG loci DHCR24, MYO5C, and CPT1A, respectively. Taken together, our study suggests that multi-omics-associated CpG methylation can provide functional read-outs for the underlying regulatory response mechanisms to disease or environmental insults.

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454