King's College London

Research portal

Design of a Variable Stiffness Flexible Manipulator with Composite Granular Jamming and Membrane Coupling

Research output: Chapter in Book/Report/Conference proceedingConference paper

Original languageEnglish
Title of host publication2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
PublisherIEEE
Pages2922-2927
Number of pages6
ISBN (Print)978-1-4673-1737-5
DOIs
Publication statusPublished - 2012
Event25th IEEE\RSJ International Conference on Intelligent Robots and Systems (IROS) - Algarve, Portugal
Duration: 7 Oct 201212 Oct 2012

Conference

Conference25th IEEE\RSJ International Conference on Intelligent Robots and Systems (IROS)
CountryPortugal
CityAlgarve
Period7/10/201212/10/2012

King's Authors

Abstract

Robotic manipulators for minimally invasive surgeries have traditionally been rigid, with a steerable end effector. While the rigidity of manipulators improve precision and controllability, it limits reachability and dexterity in constrained environments. Soft manipulators with controllable stiffness on the other hand, can be deployed in single port or natural orifice surgical applications to reach a wide range of areas inside the body, while being able to passively adapt to uncertain external forces, adapt the stiffness distribution to suit the kinematic and dynamic requirements of the task, and provide flexibility for configuration control. Here, we present the design of a snake-like laboratory made soft robot manipulator of 20 mm in average diameter, which can actuate, soften, or stiffen joints independently along the length of the manipulator by combining granular jamming with McKibben actuators. It presents a comprehensive study on the relative contributions of the granule size, material type, and membrane coupling on the range, profile, and variability of stiffness.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454