Detection of fixed length web spambot using REAL (read aligner)

Mourad Elloumi, Pedram Hayati, Costas S. Iliopoulos, Solon P. Pissis, Arfaat Shah

Research output: Chapter in Book/Report/Conference proceedingConference paper

Abstract

In this paper, we describe REAL: An efficient Read Aligner for next generation sequencing reads structures to detect web Spambots. In the last decade or so, Web spam has emerged to be a bigger than previous thought problem. It not only wastes resources, misleads people but also has the ability to trick search algorithms to gain unfair search result ranking, hence resulting in the decrease of quality and reliability of the World Wide Web (WWW) and its content. New web technologies are emerging by the clock, but at the same time new spamming techniques have also emerged to misuse these technologies.

Our experimental results show that the proposed system is successful for on-the-fly classification of web spambots hence eliminating spam in web 2.0 applications.
Original languageEnglish
Title of host publicationProceedings of the CUBE International Information Technology Conference
Place of PublicationNew York
PublisherACM
Pages820-825
Number of pages6
ISBN (Print)978-1-4503-1185-4
DOIs
Publication statusPublished - 2012

Fingerprint

Dive into the research topics of 'Detection of fixed length web spambot using REAL (read aligner)'. Together they form a unique fingerprint.

Cite this