Abstract
Background: To utilize a rabbit model of plaque disruption to assess the accuracy of different magnetic resonance sequences [T1-weighted (T1W), T2-weighted (T2W), magnetization transfer (MT) and diffusion weighting (DW)] at 11.7 T for the ex vivo detection of size and composition of thrombus associated with disrupted plaques.
Methods: Atherosclerosis was induced in the aorta of male New Zealand White rabbits (n = 17) by endothelial denudation and high-cholesterol diet. Subsequently, plaque disruption was induced by pharmacological triggering. Segments of infra-renal aorta were excised fixed in formalin and examined by ex vivo magnetic resonance imaging (MRI) at 11.7 T and histology.
Results: MRI at 11.7 T showed that: (i) magnetization transfer contrast (MTC) and diffusion weighted images (DWI) detected thrombus with higher sensitivity compared to T1W and T2W images [sensitivity: MTC = 88.2%, DWI = 76.5%, T1W = 66.6% and T2W = 43.7%, P < 0.001]. Similarly, the contrast-to-noise (CNR) between the thrombus and the underlying plaque was superior on the MTC and DWI images [CNR: MTC = 8.5 +/- 1.1, DWI = 6.0 +/- 0.8, T1W = 1.8 +/- 0.5, T2W = 3.0 +/- 1.0, P < 0.001]; (ii) MTC and DWI provided a more accurate detection of thrombus area with histology as the gold-standard [underestimation of 6% (MTC) and 17.6% (DWI) compared to an overestimation of thrombus area of 53.7% and 46.4% on T1W and T2W images, respectively]; (iii) the percent magnetization transfer rate (MTR) correlated with the fibrin (r = 0.73, P = 0.003) and collagen (r = 0.9, P = 0.004) content of the thrombus.
Conclusions: The conspicuity of the thrombus was increased on MTC and DW compared to T1W and T2W images. Changes in the %MTR and apparent diffusion coefficient can be used to identify the organization stage of the thrombus.
Original language | English |
---|---|
Article number | 45 |
Pages (from-to) | - |
Number of pages | 9 |
Journal | Journal of Cardiovascular Magnetic Resonance |
Volume | 14 |
Issue number | 1 |
DOIs | |
Publication status | Published - 25 Jun 2012 |