King's College London

Research portal

Development and validation of prediction model to estimate 10-year risk of all-cause mortality using modern statistical learning methods: a large population-based cohort study and external validation

Research output: Contribution to journalArticlepeer-review

Olesya Ajnakina, Deborah Agbedjro, Ryan McCammon, Jessica Faul, Robin M. Murray, Daniel Stahl, Andrew Steptoe

Original languageEnglish
Article number8
JournalBMC Medical Research Methodology
Issue number1
PublishedDec 2021

King's Authors


Background: In increasingly ageing populations, there is an emergent need to develop a robust prediction model for estimating an individual absolute risk for all-cause mortality, so that relevant assessments and interventions can be targeted appropriately. The objective of the study was to derive, evaluate and validate (internally and externally) a risk prediction model allowing rapid estimations of an absolute risk of all-cause mortality in the following 10 years. Methods: For the model development, data came from English Longitudinal Study of Ageing study, which comprised 9154 population-representative individuals aged 50–75 years, 1240 (13.5%) of whom died during the 10-year follow-up. Internal validation was carried out using Harrell’s optimism-correction procedure; external validation was carried out using Health and Retirement Study (HRS), which is a nationally representative longitudinal survey of adults aged ≥50 years residing in the United States. Cox proportional hazards model with regularisation by the least absolute shrinkage and selection operator, where optimisation parameters were chosen based on repeated cross-validation, was employed for variable selection and model fitting. Measures of calibration, discrimination, sensitivity and specificity were determined in the development and validation cohorts. Results: The model selected 13 prognostic factors of all-cause mortality encompassing information on demographic characteristics, health comorbidity, lifestyle and cognitive functioning. The internally validated model had good discriminatory ability (c-index=0.74), specificity (72.5%) and sensitivity (73.0%). Following external validation, the model’s prediction accuracy remained within a clinically acceptable range (c-index=0.69, calibration slope β=0.80, specificity=71.5% and sensitivity=70.6%). The main limitation of our model is twofold: 1) it may not be applicable to nursing home and other institutional populations, and 2) it was developed and validated in the cohorts with predominately white ethnicity. Conclusions: A new prediction model that quantifies absolute risk of all-cause mortality in the following 10-years in the general population has been developed and externally validated. It has good prediction accuracy and is based on variables that are available in a variety of care and research settings. This model can facilitate identification of high risk for all-cause mortality older adults for further assessment or interventions.

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454