TY - JOUR
T1 - Dicarbonyl cis-[M(CO)2(N,O)(C)(P)] (M = Re, 99mTc) Complexes with a New [2 + 1 + 1] Donor Atom Combination
AU - Triantis, Charalampos
AU - Shegani, Antonio
AU - Kiritsis, Christos
AU - Ischyropoulou, Myrto
AU - Roupa, Ioanna
AU - Psycharis, Vassilis
AU - Raptopoulou, Catherine
AU - Kyprianidou, Patricia
AU - Pelecanou, Maria
AU - Pirmettis, Ioannis
AU - Papadopoulos, Minas S
PY - 2018/7/16
Y1 - 2018/7/16
N2 - The synthesis and characterization of the dicarbonyl mixed ligand cis-[Re(CO)2(quin)(cisc)(PPh3)] complex, 4, where quin is the deprotonated quinaldic acid, cisc is cyclohexyl isocyanide, and PPh3 is triphenylphosphine, is presented. The synthesis of 4 proceeds in three steps. In the first, the intermediate fac-[Re(CO)3(quin)(H2O)] aqua complex 2 is generated from the fac-[NEt4]2[Re(CO)3Br3] precursor, together with the brominated products fac-[Re(CO)3(quinH)(Br)] 1a and fac-[NEt4][Re(CO)3(quin)(Br)] 1b, in low yield. In the following step, replacement of the aqua ligand of complex 2 by the monodentate isocyanide ligand leads to the formation of fac-[Re(CO)3(quin)(cisc)], 3. In the third step replacement of the species trans to the isocyanide carbonyl group of 3 by a phosphine generates complex 4. The Re complexes 2-4 were prepared in high yield and fully characterized by elemental analysis, spectroscopic methods, and X-ray crystallography. At the technetium-99m (99mTc) tracer level, the analogous complexes 3' and 4' were produced in high radiochemical purity, characterized by comparative reverse phase high-performance liquid chromatography and showed high resistance to transchelation by histidine or cysteine. This new [N,O][C][P] donor atom combination with the cis-[M(CO)2]+ core (M = Re, 99mTc) is a promising scaffold for the development of novel diagnostic and therapeutic targeted radiopharmaceuticals.
AB - The synthesis and characterization of the dicarbonyl mixed ligand cis-[Re(CO)2(quin)(cisc)(PPh3)] complex, 4, where quin is the deprotonated quinaldic acid, cisc is cyclohexyl isocyanide, and PPh3 is triphenylphosphine, is presented. The synthesis of 4 proceeds in three steps. In the first, the intermediate fac-[Re(CO)3(quin)(H2O)] aqua complex 2 is generated from the fac-[NEt4]2[Re(CO)3Br3] precursor, together with the brominated products fac-[Re(CO)3(quinH)(Br)] 1a and fac-[NEt4][Re(CO)3(quin)(Br)] 1b, in low yield. In the following step, replacement of the aqua ligand of complex 2 by the monodentate isocyanide ligand leads to the formation of fac-[Re(CO)3(quin)(cisc)], 3. In the third step replacement of the species trans to the isocyanide carbonyl group of 3 by a phosphine generates complex 4. The Re complexes 2-4 were prepared in high yield and fully characterized by elemental analysis, spectroscopic methods, and X-ray crystallography. At the technetium-99m (99mTc) tracer level, the analogous complexes 3' and 4' were produced in high radiochemical purity, characterized by comparative reverse phase high-performance liquid chromatography and showed high resistance to transchelation by histidine or cysteine. This new [N,O][C][P] donor atom combination with the cis-[M(CO)2]+ core (M = Re, 99mTc) is a promising scaffold for the development of novel diagnostic and therapeutic targeted radiopharmaceuticals.
U2 - 10.1021/acs.inorgchem.8b01014
DO - 10.1021/acs.inorgchem.8b01014
M3 - Article
C2 - 29949364
SN - 0020-1669
VL - 57
SP - 8354
EP - 8363
JO - INORGANIC CHEMISTRY
JF - INORGANIC CHEMISTRY
IS - 14
ER -