Research output: Contribution to journal › Article › peer-review
Jeroen Van Dessel, Marina Danckaerts, Matthijs Moerkerke, Saskia Van der Oord, Sarah Morsink, Jurgen Lemiere, Edmund Sonuga-Barke
Original language | English |
---|---|
Article number | 105723 |
Journal | Brain and Cognition |
Volume | 150 |
DOIs | |
Published | Jun 2021 |
Additional links |
Negative reinforcement processes allow individuals to avoid negative and/or harmful outcomes. They depend on the brain's ability to differentiate; (i) contingency from non-contingency, separately from (ii) judgements about positive and negative valence. Thirty-three males (8–18 years) performed a cued reaction-time task during fMRI scanning to differentiate the brain's responses to contingency and valence during loss avoidance. In two conditions, cues indicated no -contingency between participants’ responses and monetary loss – (1) CERTAIN LOSS (negative valence) of €0.20, €1 or €5 or (2) CERTAIN LOSS AVOIDANCE (positive valence). In a third condition, cues indicated a contingency between short reaction times and avoidance of monetary loss. As expected participants had shorter reaction times in this latter condition where CONDITIONAL LOSS AVOIDANCE cues activated salience and motor-response-preparation brain networks - independent of the relative valence of the contrast (CERTAIN LOSS or CERTAIN LOSS AVOIDANCE). Effects of valence were seen toward the session's end where CERTAIN LOSS AVOIDANCE cues activated ventral striatum, medial-orbitofrontal cortex and medial-temporal areas more than CERTAIN LOSS. CONDITIONAL LOSS AVOIDANCE trials with feedback indicating “success” activated ventral striatum more than “failure feedback”. The findings support the hypothesis that brain networks controlling contingency and valence processes during negative reinforcement are dissociable.
King's College London - Homepage
© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454