Does satellite cell dysfunction contribute to disease progression in Emery-Dreifuss muscular dystrophy?

Viola F. Gnocchi, Juliet A. Ellis, Peter S. Zammit

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Muscular dystrophies comprise at least 34 conditions, characterized by progressive skeletal muscle weakness and degeneration. The loci affected include mutations in both muscle-specific genes and genes that are more widely expressed such as LMNA and EMO, responsible for EDMD (Emery-Dreifuss muscular dystrophy). LMNA encodes A-type lamins, whereas EMO encodes emerin, both located in the nuclear envelope. Mutation or loss of A-type lamins or emerin in the terminally differentiated myonuclei of muscle fibres results in muscle damage. importantly, since LMNA and EMD are also expressed by the resident skeletal muscle stem cells, the satellite cells, the mutations that cause muscle damage may also directly compromise the regenerative response. Thus EDMD is different from dystrophic conditions such as Duchenne muscular dystrophy, where the mutated gene is only expressed in the muscle fibres. in this brief review, we examine the evidence that myoblasts carrying EDMD-causing mutations are compromised, and discuss the possibility that such dysfunction results in reduced efficiency of muscle regeneration, so actively contributes to disease progression.
Original languageEnglish
Pages (from-to)1344 - 1349
Number of pages6
JournalBiochemical Society Transactions
Volume36
Issue number6
DOIs
Publication statusPublished - 2008

Fingerprint

Dive into the research topics of 'Does satellite cell dysfunction contribute to disease progression in Emery-Dreifuss muscular dystrophy?'. Together they form a unique fingerprint.

Cite this