King's College London

Research portal

Driven Imposters: Controlling Expectations in Many-Body Systems

Research output: Contribution to journalLetter

Original languageEnglish
JournalPhysical Review Letters
Accepted/In press2 Mar 2020


King's Authors


We present a framework for controlling the observables of a general correlated electron system driven by an incident laser field. The approach provides a prescription for the driving required to generate an arbitrary predetermined evolution for the expectation value of a chosen observable, together with a constraint on the maximum size of this expectation. To demonstrate this, we determine the laser fields required to exactly control the current in a Fermi-Hubbard system under a range of model parameters, fully controlling the non-linear high-harmonic generation and optically
observed electron dynamics in the system. This is achieved for both the uncorrelated metallic-like state and deep in the strongly-correlated Mott insulating regime, flipping the optical responses of the two systems so as to mimic the other, creating ‘driven imposters’. We also present a general framework for the control of other dynamical variables, opening a new route for the design of driven materials with customized properties.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454