King's College London

Research portal

Duodenal cytochrome b (Cybrd1) ferric reductase functional studies in cells

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)1389-1393
Number of pages5
JournalMetallomics
Volume9
Issue number10
Early online date15 Sep 2017
DOIs
Accepted/In press15 Sep 2017
E-pub ahead of print15 Sep 2017
Published1 Oct 2017

Documents

King's Authors

Abstract

Dietary non-heme ferric iron is reduced by the ferric reductase enzyme, duodenal cytochrome b (Dcytb), before absorption by the divalent metal transporter 1 (DMT1). A single nucleotide polymorphism (SNP rs10455 mutant) that is located in the last exon of the Dcytb gene was reported in C282Y haemochromatosis HFE subjects. The present work therefore investigated the phenotype of this mutant Dcytb in Chinese hamster ovary (CHO) cells. These cultured cells were transfected with either wild type (WT) or the SNP vector plasmids of Dcytb. Ferric reductase assays were performed in Dcytb transgenic CHO cells using the ferrozine spectrophometric assay protocol. The Dcytb SNP rs10455 showed a gain-of-function capability since ferric reductase activity increased significantly (p < 0.01) in the transgenic cells. Varying ferric reductase activity was found when CHO cells were pretreated with modulators of Dcytb protein expression. Although ferric reductase in endogenous CHO cells increased with deferoxamine or CoCl2, iron loading with ferric ammonium citrate (FAC) had the opposite effect. Taken together, the study reveals a gain-of-function phenotype for Dcytb rs10455 mutation that could be a putative modifier of colorectal cancer risk, with attendant variability in penetrance among human HFE C282Y homozygotes.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454