Echocardiographic evaluation of diastolic function in mouse models of heart disease

Research output: Contribution to journalArticlepeer-review

96 Citations (Scopus)
207 Downloads (Pure)


BACKGROUND: Mouse models of heart disease are extensively employed. The echocardiographic characterization of contractile function is usually focused on systolic function with fewer studies assessing diastolic function. Furthermore, the applicability of diverse echocardiographic parameters of diastolic function that are commonly used in humans has not been extensively evaluated in different pathophysiological models in mice.

METHODS AND RESULTS: We used high resolution echocardiography to evaluate parameters of diastolic function in mouse models of chronic pressure overload (aortic constriction), volume overload (aorto-caval shunt), heart failure with preserved ejection fraction (HFpEF; DOCA-salt hypertension), and acute sarcoplasmic reticulum dysfunction induced by thapsigargin - all known to exhibit diastolic dysfunction. Left atrial area increased in all three chronic models while mitral E/A was difficult to quantify at high heart rates. Isovolumic relaxation time (IVRT) and Doppler E/E' increased significantly and the peak longitudinal strain rate during early filling (peak reverse longitudinal strain rate) decreased significantly after aortic constriction, with the changes being proportional to the magnitude of hypertrophy. In the HFpEF model, reverse longitudinal strain rate decreased significantly but changes in IVRT and E/E' were non-significant, consistent with less severe dysfunction. With volume overload, there was a significant increase in reverse longitudinal strain rate and decrease in IVRT, indicating a restrictive physiology. Acute thapsigargin treatment caused significant prolongation of IVRT and decrease in reverse longitudinal strain rate.

CONCLUSION: These results indicate that the combined measurement of left atrial area plus reverse longitudinal strain rate and/or IVRT provide an excellent overall assessment of diastolic function in the diseased mouse heart, allowing distinction between different types of pathophysiology.

Original languageEnglish
Pages (from-to)20-28
Number of pages9
JournalJournal of Molecular and Cellular Cardiology
Early online date19 Oct 2017
Publication statusPublished - 1 Jan 2018


  • Diastolic function
  • Echocardiography
  • Hypertrophy
  • Mouse


Dive into the research topics of 'Echocardiographic evaluation of diastolic function in mouse models of heart disease'. Together they form a unique fingerprint.

Cite this