Effect of lung volume on the oesophageal diaphragm EMG assessed by magnetic phrenic nerve stimulation

Y M Luo, R A Lyall, M L Harris, P Hawkins, N Hart, M I Polkey, J Moxham

    Research output: Contribution to journalArticlepeer-review

    19 Citations (Scopus)

    Abstract

    Previous studies have shown conflicting results on the effect of lung volume on the diaphragm compound muscle action potential (CMAP). Consequently, the ability to quantify the oesophageal diaphragm electromyography (EMG) has been questioned. If lung volume changes have little effect on the diaphragm CMAP the accurate measurement of voluntary EMC, as an index of respiratory drive, may be possible. Furthermore, the measurement of CMAP could provide useful clinical information when evaluating patients with neuromuscular disease. To reassess the effect of lung volume on the oesophageal diaphragm CMAP, six normal subjects were studied using an oesophageal catheter incorporating seven electrodes (number one being proximal and seven distal) that were 1 cm in length and 1 cm apart. Electrode number three was positioned at the centre of the electrically active region of the diaphragm (EARdi) at functional residual capacity (FRC), The diaphragm CMAP elicited by bilateral magnetic stimulation of the phrenic nerves was simultaneously recorded from four electrode pairs. Pair one was created from electrodes one and three, pair two from electrodes two and four, pair three from electrodes three and five, and pair four from electrodes five and seven. Phrenic nerve stimulation was at residual volume (RV), FRC, FRC+1.0 L, FRC+2.0 L, and total lung capacity (TLC). The CMAP recorded from pair one was least influenced by changes in lung volume and the amplitude was 2.41+/-0.39 (mean+/-SD), 2.60+/-0.27, 2.64+/-0.29, and 2.71+/-0.45 mV at RV, FRC, FRC+1.0 L and FRC+2.0 L, respectively. At TLC the CMAP was more variable. The CMAP amplitude recorded from pair two increased with increasing long volume and at FRC+2.0 L was 3.7 times larger than that at FRC, Pair four usually recorded substantially smaller CMAPs at all lung volumes. This study shows that the diaphragm compound muscle action potential recorded from an oesophageal electrode just above the diaphragm is relatively stable over the lung volume range residual volume to functional residual capacity+2.0 L.
    Original languageEnglish
    Pages (from-to)1033 - 1038
    Number of pages6
    JournalEuropean Respiratory Journal
    Volume15
    Issue number6
    DOIs
    Publication statusPublished - 2000

    Fingerprint

    Dive into the research topics of 'Effect of lung volume on the oesophageal diaphragm EMG assessed by magnetic phrenic nerve stimulation'. Together they form a unique fingerprint.

    Cite this