King's College London

Research portal

Efficient Gaussian Process-Based Modelling and Prediction of Image Time Series

Research output: Contribution to journalArticle

Marco Lorenzi, Gabriel Ziegler, Daniel C. Alexander, Sebastien Ourselin

Original languageEnglish
Pages (from-to)626-637
Number of pages12
JournalInformation processing in medical imaging : proceedings of the ... conference

King's Authors


In this work we propose a novel Gaussian process-based spatio-temporal model of time series of images. By assuming separability of spatial and temporal processes we provide a very efficient and robust formulation for the marginal likelihood computation and the posterior prediction. The model adaptively accounts for local spatial correlations of the data, and the covariance structure is effectively parameterised by the Kronecker product of covariance matrices of very small size, each encoding only a single direction in space. We provide a simple and flexible framework for within- and between-subject modelling and prediction. In particular, we introduce the Hoffman-Ribak method for efficient inference on posterior processes and its uncertainty. The proposed framework is applied in the context of longitudinal modelling in Alzheimer's disease. We firstly demonstrate the advantage of our non-parametric method for modelling of within-subject structural changes. The results show that non-parametric methods demonstrably outperform conventional parametric methods. Then the framework is extended to optimize complex parametrized covariate kernels. Using Bayesian model comparison via marginal likelihood the framework enables to compare different hypotheses about individual change processes of images.

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454