Abstract
A new strategy is described for comparing, quantitatively, the ability of hydrogenases to tolerate exposure to O-2 and anoxic oxidizing conditions. Using protein film voltammetry, the inherent sensitivities to these challenges (thermodynamic potentials and rates of reactions) have been measured for enzymes from a range of mesophilic microorganisms. In the absence Of O-2, all the hydrogenases undergo reversible inactivation at various potentials above that of the H+/H-2 redox couple, and H-2 oxidation activities are thus limited to characteristic "potential windows". Reactions with O-2 vary greatly; the [FeFe]-hydrogenase from Desulfovibrio desulfuricans ATCC 7757, an anaerobe, is irreversibly damaged by O-2, surviving only if exposed to O-2 in the anaerobically oxidized state (which therefore affords protection). In contrast, the membrane-bound [NiFe]-hydrogenase from the aerobe, Ralstonia eutropha, reacts reversibly with O-2 even during turnover and continues to catalyze H-2 oxidation in the presence Of O-2
Original language | English |
---|---|
Pages (from-to) | 18179 - 18189 |
Number of pages | 11 |
Journal | Journal of the American Chemical Society |
Volume | 127 |
Issue number | 51 |
DOIs | |
Publication status | Published - 28 Dec 2005 |