TY - JOUR
T1 - Emotional detachment in psychopathy: Involvement of dorsal default-mode connections
AU - Arjun, Sethi
AU - Gregory, Sarah Louise
AU - Dell' Acqua, Flavio
AU - Thomas, Eva
AU - Simmons, Andrew
AU - Murphy, Declan G
AU - Hodgins, Sheilagh Mary
AU - Blackwood, Nigel
AU - Craig, Michael Cohen
PY - 2015/1
Y1 - 2015/1
N2 - Criminal psychopathy is defined by emotional detachment [Psychopathy Checklist - Revised (PCL-R) factor 1], and antisocial behaviour (PCL-R factor 2). Previous work has associated antisocial behaviour in psychopathy with abnormalities in a ventral temporo-amygdala-orbitofrontal network. However, little is known of the neural correlates of emotional detachment. Imaging studies have indicated that the 'default-mode network' (DMN), and in particular its dorsomedial (medial prefrontal - posterior cingulate) component, contributes to affective and social processing in healthy individuals. Furthermore, recent work suggests that this network may be implicated in psychopathy. However, no research has examined the relationship between psychopathy, emotional detachment, and the white matter underpinning the DMN. We therefore used diffusion tensor imaging (DTI) tractography in 13 offenders with psychopathy and 13 non-offenders to investigate the relationship between emotional detachment and the microstructure of white matter connections within the DMN. These included the dorsal cingulum (containing the medial prefrontal - posterior cingulate connections of the DMN), and the ventral cingulum (containing the posterior cingulate - medial temporal connections of the DMN). We found that fractional anisotropy (FA) was reduced in the left dorsal cingulum in the psychopathy group (p = .024). Moreover, within this group, emotional detachment was negatively correlated with FA in this tract portion bilaterally (left: r = -.61, p = .026; right: r = -.62, p = .023). These results suggest the importance of the dorsal DMN in the emotional detachment observed in individuals with psychopathy. We propose a 'dual-network' model of white matter abnormalities in the disorder, which incorporates these with previous findings
AB - Criminal psychopathy is defined by emotional detachment [Psychopathy Checklist - Revised (PCL-R) factor 1], and antisocial behaviour (PCL-R factor 2). Previous work has associated antisocial behaviour in psychopathy with abnormalities in a ventral temporo-amygdala-orbitofrontal network. However, little is known of the neural correlates of emotional detachment. Imaging studies have indicated that the 'default-mode network' (DMN), and in particular its dorsomedial (medial prefrontal - posterior cingulate) component, contributes to affective and social processing in healthy individuals. Furthermore, recent work suggests that this network may be implicated in psychopathy. However, no research has examined the relationship between psychopathy, emotional detachment, and the white matter underpinning the DMN. We therefore used diffusion tensor imaging (DTI) tractography in 13 offenders with psychopathy and 13 non-offenders to investigate the relationship between emotional detachment and the microstructure of white matter connections within the DMN. These included the dorsal cingulum (containing the medial prefrontal - posterior cingulate connections of the DMN), and the ventral cingulum (containing the posterior cingulate - medial temporal connections of the DMN). We found that fractional anisotropy (FA) was reduced in the left dorsal cingulum in the psychopathy group (p = .024). Moreover, within this group, emotional detachment was negatively correlated with FA in this tract portion bilaterally (left: r = -.61, p = .026; right: r = -.62, p = .023). These results suggest the importance of the dorsal DMN in the emotional detachment observed in individuals with psychopathy. We propose a 'dual-network' model of white matter abnormalities in the disorder, which incorporates these with previous findings
U2 - 10.1016/j.cortex.2014.07.018
DO - 10.1016/j.cortex.2014.07.018
M3 - Article
SN - 0010-9452
VL - 62
SP - 11
EP - 19
JO - Cortex
JF - Cortex
ER -