TY - JOUR
T1 - Endocannabinoid Gene × Gene Interaction Association to Alcohol Use Disorder in Two Adolescent Cohorts
AU - The IMAGEN Consortium
AU - Elkrief, Laurent
AU - Spinney, Sean
AU - Vosberg, Daniel E.
AU - Banaschewski, Tobias
AU - Bokde, Arun L.W.
AU - Quinlan, Erin Burke
AU - Desrivières, Sylvane
AU - Flor, Herta
AU - Garavan, Hugh
AU - Gowland, Penny
AU - Heinz, Andreas
AU - Brühl, Rüdiger
AU - Martinot, Jean Luc
AU - Paillère Martinot, Marie Laure
AU - Nees, Frauke
AU - Papadopoulos Orfanos, Dimitri
AU - Poustka, Luise
AU - Hohmann, Sarah
AU - Millenet, Sabina
AU - Fröhner, Juliane H.
AU - Smolka, Michael N.
AU - Walter, Henrik
AU - Whelan, Robert
AU - Schumann, Gunter
AU - Pausova, Zdenka
AU - Paus, Tomáš
AU - Huguet, Guillaume
AU - Conrod, Patricia
N1 - Funding Information:
GH is supported by the Sainte-Justine Foundation, the Merit scholarship program for foreign students, and the Network of Applied Genetic Medicine fellowships. PC is supported by a Tier 1 Canada Research Chair and this research was supported by a CIHR catalyst grant FRN155406 and the Canadian Cannabis and Psychosis Team Grant (FRN CA7170130). This work received support from the following sources: the European Union-funded FP6 Integrated Project IMAGEN (Reinforcement-related behavior in normal brain function and psychopathology) (LSHM-CT-2007-037286), the Horizon 2020 funded ERC Advanced Grant ‘STRATIFY’ (Brain network based stratification of reinforcement-related disorders) (695313), ERANID (Understanding the Interplay between Cultural, Biological and Subjective Factors in Drug Use Pathways) (PR-ST-0416-10004), BRIDGET (JPND: BRain Imaging, cognition Dementia and next generation GEnomics) (MR/N027558/1), Human Brain Project (HBP SGA 2, 785907), the FP7 project MATRICS (603016), the Medical Research Council Grant ’c-VEDA’ (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesministeriumfür Bildung und Forschung (BMBF grants 01GS08152; 01EV0711; Forschungsnetz AERIAL 01EE1406A, 01EE1406B), the Deutsche Forschungsgemeinschaft (DFG grants 186318919 [FOR 1617], 178833530 [SFB 940], and 402170461 [TRR 265]), the Medical Research Foundation and Medical Research Council (grants MR/R00465X/1 and MR/S020306/1), the National Institutes of Health (NIH) funded ENIGMA (grants 5U54EB020403-05 and 1R56AG058854-01). Further support was provided by grants from: ANR (project AF12-NEUR0008-01 - WM2NA, and ANR-12-SAMA-0004), the Eranet Neuron (ANR-18-NEUR00002-01), the Fondation de France (00081242), the Fondation pour la Recherche Médicale (DPA20140629802), the Mission Interministérielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA),
Funding Information:
Funding. GH is supported by the Sainte-Justine Foundation, the Merit scholarship program for foreign students, and the Network of Applied Genetic Medicine fellowships. PC is supported by a Tier 1 Canada Research Chair and this research was supported by a CIHR catalyst grant FRN155406 and the Canadian Cannabis and Psychosis Team Grant (FRN CA7170130). This work received support from the following sources: the European Union-funded FP6 Integrated Project IMAGEN (Reinforcement-related behavior in normal brain function and psychopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced Grant ?STRATIFY' (Brain network based stratification of reinforcement-related disorders) (695313), ERANID (Understanding the Interplay between Cultural, Biological and Subjective Factors in Drug Use Pathways) (PR-ST-0416-10004), BRIDGET (JPND: BRain Imaging, cognition Dementia and next generation GEnomics) (MR/N027558/1), Human Brain Project (HBP SGA 2, 785907), the FP7 project MATRICS (603016), the Medical Research Council Grant 'c-VEDA' (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, the Bundesministeriumf?r Bildung und Forschung (BMBF grants 01GS08152; 01EV0711; Forschungsnetz AERIAL 01EE1406A, 01EE1406B), the Deutsche Forschungsgemeinschaft (DFG grants 186318919 [FOR 1617], 178833530 [SFB 940], and 402170461 [TRR 265]), the Medical Research Foundation and Medical Research Council (grants MR/R00465X/1 and MR/S020306/1), the National Institutes of Health (NIH) funded ENIGMA (grants 5U54EB020403-05 and 1R56AG058854-01). Further support was provided by grants from: ANR (project AF12-NEUR0008-01 - WM2NA, and ANR-12-SAMA-0004), the Eranet Neuron (ANR-18-NEUR00002-01), the Fondation de France (00081242), the Fondation pour la Recherche M?dicale (DPA20140629802), the Mission Interminist?rielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA), the Assistance-Publique-H?pitaux-de-Paris and INSERM (interface grant), Paris Sud University IDEX 2012, the fondation de l'Avenir (grant AP-RM-17-013); the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797), U.S.A. (Axon, Testosterone and Mental Health during Adolescence; RO1 MH085772-01A1), and by NIH Consortium grant U54 EB020403, supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Excellence. The Saguenay Youth Study project was funded by the Canadian Institutes of Health Research, Heart and Stroke Foundation of Quebec, and the Canadian Foundation for Innovation.
Publisher Copyright:
© Copyright © 2021 Elkrief, Spinney, Vosberg, Banaschewski, Bokde, Quinlan, Desrivières, Flor, Garavan, Gowland, Heinz, Brühl, Martinot, Paillère Martinot, Nees, Papadopoulos Orfanos, Poustka, Hohmann, Millenet, Fröhner, Smolka, Walter, Whelan, Schumann, Pausova, Paus, Huguet, Conrod and the IMAGEN consortium.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/4/20
Y1 - 2021/4/20
N2 - Genetic markers of the endocannabinoid system have been linked to a variety of addiction-related behaviors that extend beyond cannabis use. In the current study we investigate the relationship between endocannabinoid (eCB) genetic markers and alcohol use disorder (AUD) in European adolescents (14–18 years old) followed in the IMAGEN study (n = 2,051) and explore replication in a cohort of North American adolescents from Canadian Saguenay Youth Study (SYS) (n = 772). Case-control status is represented by a score of more than 7 on the Alcohol Use Disorder Identification Test (AUDIT). First a set-based test method was used to examine if a relationship between the eCB system and AUDIT case/control status exists at the gene level. Using only SNPs that are both independent and significantly associated to case-control status, we perform Fisher's exact test to determine SNP level odds ratios in relation to case-control status and then perform logistic regressions as post-hoc analysis, while considering various covariates. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the most robust SNP×SNP interaction of the five eCB genes with positive AUDIT screen. While no gene-sets were significantly associated to AUDIT scores after correction for multiple tests, in the case/control analysis, 7 SNPs were significantly associated with AUDIT scores of > 7 (p < 0.05; OR<1). Two SNPs remain significant after correction by false discovery rate (FDR): rs9343525 in CNR1 (pcorrected =0.042, OR = 0.73) and rs507961 in MGLL (pcorrected = 0.043, OR = 0.78). Logistic regression showed that both rs9353525 (CNR1) and rs507961 (MGLL) remained significantly associated with positive AUDIT screens (p < 0.01; OR < 1) after correction for multiple covariables and interaction of covariable × SNP. This result was not replicated in the SYS cohort. The GMDR model revealed a significant three-SNP interaction (p = 0.006) involving rs484061 (MGLL), rs4963307 (DAGLA), and rs7766029 (CNR1) predicted case-control status, after correcting for multiple covariables in the IMAGEN sample. A binomial logistic regression of the combination of these three SNPs by phenotype in the SYS cohort showed a result in the same direction as seen in the IMAGEN cohort (BETA = 0.501, p = 0.06). While preliminary, the present study suggests that the eCB system may play a role in the development of AUD in adolescents.
AB - Genetic markers of the endocannabinoid system have been linked to a variety of addiction-related behaviors that extend beyond cannabis use. In the current study we investigate the relationship between endocannabinoid (eCB) genetic markers and alcohol use disorder (AUD) in European adolescents (14–18 years old) followed in the IMAGEN study (n = 2,051) and explore replication in a cohort of North American adolescents from Canadian Saguenay Youth Study (SYS) (n = 772). Case-control status is represented by a score of more than 7 on the Alcohol Use Disorder Identification Test (AUDIT). First a set-based test method was used to examine if a relationship between the eCB system and AUDIT case/control status exists at the gene level. Using only SNPs that are both independent and significantly associated to case-control status, we perform Fisher's exact test to determine SNP level odds ratios in relation to case-control status and then perform logistic regressions as post-hoc analysis, while considering various covariates. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the most robust SNP×SNP interaction of the five eCB genes with positive AUDIT screen. While no gene-sets were significantly associated to AUDIT scores after correction for multiple tests, in the case/control analysis, 7 SNPs were significantly associated with AUDIT scores of > 7 (p < 0.05; OR<1). Two SNPs remain significant after correction by false discovery rate (FDR): rs9343525 in CNR1 (pcorrected =0.042, OR = 0.73) and rs507961 in MGLL (pcorrected = 0.043, OR = 0.78). Logistic regression showed that both rs9353525 (CNR1) and rs507961 (MGLL) remained significantly associated with positive AUDIT screens (p < 0.01; OR < 1) after correction for multiple covariables and interaction of covariable × SNP. This result was not replicated in the SYS cohort. The GMDR model revealed a significant three-SNP interaction (p = 0.006) involving rs484061 (MGLL), rs4963307 (DAGLA), and rs7766029 (CNR1) predicted case-control status, after correcting for multiple covariables in the IMAGEN sample. A binomial logistic regression of the combination of these three SNPs by phenotype in the SYS cohort showed a result in the same direction as seen in the IMAGEN cohort (BETA = 0.501, p = 0.06). While preliminary, the present study suggests that the eCB system may play a role in the development of AUD in adolescents.
KW - alcohol use disorder
KW - cannabinoid receptor 1
KW - CNR1
KW - DAGL
KW - endocannabinoid system
KW - MGLL
UR - http://www.scopus.com/inward/record.url?scp=85105132404&partnerID=8YFLogxK
U2 - 10.3389/fpsyt.2021.645746
DO - 10.3389/fpsyt.2021.645746
M3 - Article
AN - SCOPUS:85105132404
SN - 1664-0640
VL - 12
JO - Frontiers in Psychiatry
JF - Frontiers in Psychiatry
M1 - 645746
ER -