Abstract
Classifying elements of the Brauer group of a variety X over a p-adic field according to the p-adic accuracy needed to evaluate them gives a filtration on Br X. We relate this filtration to that defined by Kato's Swan conductor. The refined Swan conductor controls how the evaluation maps vary on p-adic discs: this provides a geometric characterisation of the refined Swan conductor. We give applications to rational points on varieties over number fields, including failure of weak approximation for varieties admitting a non-zero global 2-form.
Original language | English |
---|---|
Journal | INVENTIONES MATHEMATICAE |
Publication status | Accepted/In press - 13 Jul 2023 |