King's College London

Research portal

Exome-wide association study of plasma lipids in >300,000 individuals

Research output: Contribution to journalLetter

Dajiang J Liu, Gina M Peloso, Haojie Yu, Adam S Butterworth, Xiao Wang, Anubha Mahajan, Danish Saleheen, Connor Emdin, Dewan Alam, Alexessander Couto Alves, Philippe Amouyel, Emanuele Di Angelantonio, Dominique Arveiler, Themistocles L Assimes, Paul L Auer, Usman Baber, Christie M Ballantyne, Lia E Bang, Marianne Benn, Joshua C Bis & 31 more Michael Boehnke, Eric Boerwinkle, Jette Bork-Jensen, Erwin P Bottinger, Ivan Brandslund, Morris Brown, Fabio Busonero, Mark J Caulfield, John C Chambers, Daniel I Chasman, Y Eugene Chen, Yii-Der Ida Chen, Rajiv Chowdhury, Cramer Christensen, Audrey Y Chu, John M Connell, Francesco Cucca, L Adrienne Cupples, Scott M Damrauer, Gail Davies, Ian J Deary, George Dedoussis, Joshua C Denny, Anna Dominiczak, Marie-Pierre Dubé, Tapani Ebeling, Gudny Eiriksdottir, Tõnu Esko, Kerrin S Small, Timothy D Spector, Charge Diabetes Working Group

Original languageEnglish
Pages (from-to)1758-1766
Number of pages9
JournalNature Genetics
Volume49
Issue number12
Early online date30 Oct 2017
DOIs
Publication statusPublished - Dec 2017

King's Authors

Abstract

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454