Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq

Anto Rajkumar, Per Qvist, Ross Lazarus, Francesco Lescai, Jia Ju, Mette Nyegaard, Ole Mors, Anders D Børglum, Qibin Li, Jane H Christensen

Research output: Contribution to journalArticlepeer-review

140 Citations (Scopus)
289 Downloads (Pure)

Abstract

Background

Massively parallel cDNA sequencing (RNA-seq) experiments are gradually superseding microarrays in quantitative gene expression profiling. However, many biologists are uncertain about the choice of differentially expressed gene (DEG) analysis methods and the validity of cost-saving sample pooling strategies for their RNA-seq experiments. Hence, we performed experimental validation of DEGs identified by Cuffdiff2, edgeR, DESeq2 and Two-stage Poisson Model (TSPM) in a RNA-seq experiment involving mice amygdalae micro-punches, using high-throughput qPCR on independent biological replicate samples. Moreover, we sequenced RNA-pools and compared their results with sequencing corresponding individual RNA samples.

Results

False-positivity rate of Cuffdiff2 and false-negativity rates of DESeq2 and TSPM were high. Among the four investigated DEG analysis methods, sensitivity and specificity of edgeR was relatively high. We documented the pooling bias and that the DEGs identified in pooled samples suffered low positive predictive values.

Conclusions

Our results highlighted the need for combined use of more sensitive DEG analysis methods and high-throughput validation of identified DEGs in future RNA-seq experiments. They indicated limited utility of sample pooling strategies for RNA-seq in similar setups and supported increasing the number of biological replicate samples.

Original languageEnglish
Article number548
Pages (from-to)1-8
JournalBMC GENOMICS
Volume16
Early online date25 Jul 2015
DOIs
Publication statusPublished - 2015

Keywords

  • Animals
  • DNA, Complementary
  • High-Throughput Nucleotide Sequencing
  • Mice
  • Sequence Analysis, RNA
  • Software

Fingerprint

Dive into the research topics of 'Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq'. Together they form a unique fingerprint.

Cite this