TY - JOUR
T1 - Exploring Digital Biomarkers of Illness Activity in Mood Episodes
T2 - Hypotheses Generating and Model Development Study
AU - Anmella, Gerard
AU - Corponi, Filippo
AU - Li, Bryan M.
AU - Mas, Ariadna
AU - Sanabra, Miriam
AU - Pacchiarotti, Isabella
AU - Valentí, Marc
AU - Grande, Iria
AU - Benabarre, Antoni
AU - Giménez-Palomo, Anna
AU - Garriga, Marina
AU - Agasi, Isabel
AU - Bastidas, Anna
AU - Cavero, Myriam
AU - Fernández-Plaza, Tabatha
AU - Arbelo, Néstor
AU - Bioque, Miquel
AU - García-Rizo, Clemente
AU - Verdolini, Norma
AU - Madero, Santiago
AU - Murru, Andrea
AU - Amoretti, Silvia
AU - Martínez-Aran, Anabel
AU - Ruiz, Victoria
AU - Fico, Giovanna
AU - De Prisco, Michele
AU - Oliva, Vincenzo
AU - Solanes, Aleix
AU - Radua, Joaquim
AU - Samalin, Ludovic
AU - Young, Allan H.
AU - Vieta, Eduard
AU - Vergari, Antonio
AU - Hidalgo-Mazzei, Diego
N1 - Funding Information:
GA is supported by a Rio Hortega 2021 grant (CM21/00017) from the Spanish Ministry of Health financed by the Instituto de Salud Carlos III (ISCIII) and cofinanced by Fondo Social Europeo Plus (FSE+). FC and BML are supported by the United Kingdom Research and Innovation (grant EP/S02431X/1), UK Research and Innovation (UKRI) Centre for Doctoral Training in Biomedical AI at the University of Edinburgh, School of Informatics. A Mas is supported by an Agència de Gestió d’Ajudes Universitàries i de Investigació (AGAUR)—PANDÈMIES 2020 grant (PI047003) from the Generalitat de Catalunya. MS is supported by a grant from the Baszucki Brain Research Fund. IG thanks the support of the Spanish Ministry of Science and Innovation (PI19/00954) integrated into the Plan Nacional de I+D+I and cofinanced by the ISCIII-Subdirección General de Evaluación y el Fondos Europeos de la Unión Europea (FEDER, FSE, Next Generation EU/Plan de Recuperación Transformación y Resiliencia_PRTR); the ISCIII; the CIBER of Mental Health (CIBERSAM); and the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement (2017 SGR 1365), Centres de Recerca de Catalunya (CERCA) Programme or Generalitat de Catalunya as well as the Fundació Clínic per la Recerca Biomèdica (Pons Bartran 2022-FRCB_PB1_2022). AG-P is supported by a Rio Hortega 2021 grant (CM21/00094) from the Spanish Ministry of Health financed by ISCIII and cofinanced by Fondo Social Europeo Plus (FSE+). MB thanks the Spanish Ministry of Health and ISCIII (PI20/01066). NV thanks the Biomedicine International Training Research Programme for Excellent Clinician-Scientists (BITRECS) project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754550 and from “La Caixa” Foundation (ID 100010434), under the agreement LCF/PR/GN18/50310006. SM is supported by the grant “Contracte de Recerca Emili Letang-Josep Font” provided by Hospital Clínic de Barcelona. A Murru thanks the support of the Spanish Ministry of Science and Innovation (PI19/00672) integrated into the Plan Nacional de I+D+I and cofinanced by the ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER). SA has been supported by a Sara Borrell contract (CD20/00177), funded by ISCIII and cofunded by the European Social Fund “Investing in your future.” AM-A thanks the support of the Spanish Ministry of Science and Innovation (PI18/00789, PI21/00787) integrated into the Plan Nacional de I+D+I and cofinanced by ISCIII-Subdirección General de Evaluación and the FEDER; the ISCIII; the CIBERSAM; the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement (2017 SGR 1365), the CERCA Programme, and the Departament de Salut de la Generalitat de Catalunya for the PERIS grant SLT006/17/00177. GF is supported by a fellowship from “La Caixa” Foundation (ID 100010434)—fellowship code—LCF/BQ/DR21/11880019. JR is supported by a Miguel Servet II contract (CPII19/00009), funded by ISCIII and cofunded by the European Social Fund “Investing in your future.” EV thanks the support of the Spanish Ministry of Science, Innovation and Universities (PI15/00283, PI18/00805, PI19/00394, CPII19/00009) integrated into the Plan Nacional de I+D+I and cofinanced by the ISCIII-Subdirección General de Evaluación and the FEDER; the ISCIII; the CIBERSAM; the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement (2017 SGR 1365), and the CERCA Programme or Generalitat de Catalunya. The authors would like to thank the Departament de Salut de la Generalitat de Catalunya for the PERIS grant SLT006/17/00357. DH-M is supported by a Juan Rodés JR18/00021 granted by the ISCIII.
Funding Information:
This project was funded by the ISCIII (FIS PI21/00340, TIMEBASE Study), cofunded by the Euopean Union, as well as a Baszucki Brain Research Fund grant (PI046998) from the Milken Foundation. The ISCIII or the Milken Foundation had no further role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.
Publisher Copyright:
© Gerard Anmella, Filippo Corponi, Bryan M Li, Ariadna Mas, Miriam Sanabra, Isabella Pacchiarotti, Marc Valentí, Iria Grande, Antoni Benabarre, Anna Giménez-Palomo, Marina Garriga, Isabel Agasi, Anna Bastidas, Myriam Cavero, Tabatha Fernández-Plaza, Néstor Arbelo, Miquel Bioque, Clemente García-Rizo, Norma Verdolini, Santiago Madero, Andrea Murru, Silvia Amoretti, Anabel Martínez-Aran, Victoria Ruiz, Giovanna Fico, Michele De Prisco, Vincenzo Oliva, Aleix Solanes, Joaquim Radua, Ludovic Samalin, Allan H Young, Eduard Vieta, Antonio Vergari, Diego Hidalgo-Mazzei.
PY - 2023
Y1 - 2023
N2 - Background: Depressive and manic episodes within bipolar disorder (BD) and major depressive disorder (MDD) involve altered mood, sleep, and activity, alongside physiological alterations wearables can capture. Objective: Firstly, we explored whether physiological wearable data could predict (aim 1) the severity of an acute affective episode at the intra-individual level and (aim 2) the polarity of an acute affective episode and euthymia among different individuals. Secondarily, we explored which physiological data were related to prior predictions, generalization across patients, and associations between affective symptoms and physiological data. Methods: We conducted a prospective exploratory observational study including patients with BD and MDD on acute affective episodes (manic, depressed, and mixed) whose physiological data were recorded using a research-grade wearable (Empatica E4) across 3 consecutive time points (acute, response, and remission of episode). Euthymic patients and healthy controls were recorded during a single session (approximately 48 h). Manic and depressive symptoms were assessed using standardized psychometric scales. Physiological wearable data included the following channels: acceleration (ACC), skin temperature, blood volume pulse, heart rate (HR), and electrodermal activity (EDA). Invalid physiological data were removed using a rule-based filter, and channels were time aligned at 1-second time units and segmented at window lengths of 32 seconds, as best-performing parameters. We developed deep learning predictive models, assessed the channels’ individual contribution using permutation feature importance analysis, and computed physiological data to psychometric scales’ items normalized mutual information (NMI). We present a novel, fully automated method for the preprocessing and analysis of physiological data from a research-grade wearable device, including a viable supervised learning pipeline for time-series analyses. Results: Overall, 35 sessions (1512 hours) from 12 patients (manic, depressed, mixed, and euthymic) and 7 healthy controls (mean age 39.7, SD 12.6 years; 6/19, 32% female) were analyzed. The severity of mood episodes was predicted with moderate (62%-85%) accuracies (aim 1), and their polarity with moderate (70%) accuracy (aim 2). The most relevant features for the former tasks were ACC, EDA, and HR. There was a fair agreement in feature importance across classification tasks (Kendall W=0.383). Generalization of the former models on unseen patients was of overall low accuracy, except for the intra-individual models. ACC was associated with “increased motor activity” (NMI>0.55), “insomnia” (NMI=0.6), and “motor inhibition” (NMI=0.75). EDA was associated with “aggressive behavior” (NMI=1.0) and “psychic anxiety” (NMI=0.52). Conclusions: Physiological data from wearables show potential to identify mood episodes and specific symptoms of mania and depression quantitatively, both in BD and MDD. Motor activity and stress-related physiological data (EDA and HR) stand out as potential digital biomarkers for predicting mania and depression, respectively. These findings represent a promising pathway toward personalized psychiatry, in which physiological wearable data could allow the early identification and intervention of mood episodes.
AB - Background: Depressive and manic episodes within bipolar disorder (BD) and major depressive disorder (MDD) involve altered mood, sleep, and activity, alongside physiological alterations wearables can capture. Objective: Firstly, we explored whether physiological wearable data could predict (aim 1) the severity of an acute affective episode at the intra-individual level and (aim 2) the polarity of an acute affective episode and euthymia among different individuals. Secondarily, we explored which physiological data were related to prior predictions, generalization across patients, and associations between affective symptoms and physiological data. Methods: We conducted a prospective exploratory observational study including patients with BD and MDD on acute affective episodes (manic, depressed, and mixed) whose physiological data were recorded using a research-grade wearable (Empatica E4) across 3 consecutive time points (acute, response, and remission of episode). Euthymic patients and healthy controls were recorded during a single session (approximately 48 h). Manic and depressive symptoms were assessed using standardized psychometric scales. Physiological wearable data included the following channels: acceleration (ACC), skin temperature, blood volume pulse, heart rate (HR), and electrodermal activity (EDA). Invalid physiological data were removed using a rule-based filter, and channels were time aligned at 1-second time units and segmented at window lengths of 32 seconds, as best-performing parameters. We developed deep learning predictive models, assessed the channels’ individual contribution using permutation feature importance analysis, and computed physiological data to psychometric scales’ items normalized mutual information (NMI). We present a novel, fully automated method for the preprocessing and analysis of physiological data from a research-grade wearable device, including a viable supervised learning pipeline for time-series analyses. Results: Overall, 35 sessions (1512 hours) from 12 patients (manic, depressed, mixed, and euthymic) and 7 healthy controls (mean age 39.7, SD 12.6 years; 6/19, 32% female) were analyzed. The severity of mood episodes was predicted with moderate (62%-85%) accuracies (aim 1), and their polarity with moderate (70%) accuracy (aim 2). The most relevant features for the former tasks were ACC, EDA, and HR. There was a fair agreement in feature importance across classification tasks (Kendall W=0.383). Generalization of the former models on unseen patients was of overall low accuracy, except for the intra-individual models. ACC was associated with “increased motor activity” (NMI>0.55), “insomnia” (NMI=0.6), and “motor inhibition” (NMI=0.75). EDA was associated with “aggressive behavior” (NMI=1.0) and “psychic anxiety” (NMI=0.52). Conclusions: Physiological data from wearables show potential to identify mood episodes and specific symptoms of mania and depression quantitatively, both in BD and MDD. Motor activity and stress-related physiological data (EDA and HR) stand out as potential digital biomarkers for predicting mania and depression, respectively. These findings represent a promising pathway toward personalized psychiatry, in which physiological wearable data could allow the early identification and intervention of mood episodes.
KW - bipolar disorder
KW - deep learning
KW - depression
KW - digital biomarker
KW - Empatica E4
KW - machine learning
KW - major depressive disorder
KW - mania
KW - physiological data
KW - wearable
UR - http://www.scopus.com/inward/record.url?scp=85152131859&partnerID=8YFLogxK
U2 - 10.2196/45405
DO - 10.2196/45405
M3 - Article
C2 - 36939345
AN - SCOPUS:85152131859
SN - 2291-5222
VL - 11
JO - JMIR mHealth and uHealth
JF - JMIR mHealth and uHealth
M1 - e45405
ER -