Fast registration of 3D fetal ultrasound images using learned corresponding salient points

Alberto Gomez Herrero*, Kanwal Bhatia, Sarjana Tharin, James Housden, Nicolas Toussaint, Julia Schnabel

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingOther chapter contributionpeer-review

10 Citations (Scopus)

Abstract

We propose a fast feature-based rigid registration framework with a novel feature saliency detection technique. The method works by automatically classifying candidate image points as salient or non-salient using a support vector machine trained on points which have previously driven successful registrations. Resulting candidate salient points are used for symmetric matching based on local descriptor similarity and followed by RANSAC outlier rejection to obtain the final transform. The proposed registration framework was applied to 3D real-time fetal ultrasound images, thus covering the entire fetal anatomy for extended FoV imaging. Our method was applied to data from 5 patients, and compared to a conventional saliency point detection method (SIFT) in terms of computational time, quality of the point detection and registration accuracy. Our method achieved similar accuracy and similar saliency detection quality in < 5% the detection time, showing promising capabilities towards real-time whole-body fetal ultrasound imaging.

Original languageEnglish
Title of host publicationFetal, Infant and Ophthalmic Medical Image Analysis - International Workshop, FIFI 2017 and 4th International Workshop, OMIA 2017 Held in Conjunction with MICCAI 2017, Proceedings
PublisherSpringer Verlag
Pages33-41
Number of pages9
Volume10554 LNCS
ISBN (Print)9783319675602
DOIs
Publication statusPublished - 2017
EventInternational Workshop on Fetal and Infant Image Analysis, FIFI 2017 and 4th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2017 held in Conjunction with 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duration: 14 Sept 201714 Sept 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10554 LNCS
ISSN (Print)03029743
ISSN (Electronic)16113349

Conference

ConferenceInternational Workshop on Fetal and Infant Image Analysis, FIFI 2017 and 4th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2017 held in Conjunction with 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017
Country/TerritoryCanada
CityQuebec City
Period14/09/201714/09/2017

Fingerprint

Dive into the research topics of 'Fast registration of 3D fetal ultrasound images using learned corresponding salient points'. Together they form a unique fingerprint.

Cite this