Abstract
Focusing light through a multimode fibre (MMF) has attracted significant research
interest, mainly driven by the need for miniature endoscopes in biomedicine. In recent years, digital micromirror devices (DMD) have become increasingly popular as a high-speed alternative to liquid-crystal spatial light modulators for light focusing via wavefront shaping based on binary amplitude modulations. To exploit the potentials and limitations of the state-of-the-art DMD-based wavefront shaping methods, in this study, for the first time, we compared four
representative, non-holographic and DMD-based methods that are reported so far in literature with the same experimental and simulation conditions, including a real-valued intensity transmission matrix (RVITM)-based algorithm, a complex-valued transmission matrix (TM)-based algorithm, a conditional probability algorithm and a genetic algorithm. We investigated the maximum achievable peak-to-background ratio (PBR) in comparison to theoretical expectations, and further improved the performance of the RVITM-based method. With both numerical simulations and experiments, we found that the genetic algorithm offered the highest PBR but suffered from the lowest focusing speed, while the RVITM-based algorithm provided a comparable PBR to that of the genetic algorithm, and the highest focusing speed.
interest, mainly driven by the need for miniature endoscopes in biomedicine. In recent years, digital micromirror devices (DMD) have become increasingly popular as a high-speed alternative to liquid-crystal spatial light modulators for light focusing via wavefront shaping based on binary amplitude modulations. To exploit the potentials and limitations of the state-of-the-art DMD-based wavefront shaping methods, in this study, for the first time, we compared four
representative, non-holographic and DMD-based methods that are reported so far in literature with the same experimental and simulation conditions, including a real-valued intensity transmission matrix (RVITM)-based algorithm, a complex-valued transmission matrix (TM)-based algorithm, a conditional probability algorithm and a genetic algorithm. We investigated the maximum achievable peak-to-background ratio (PBR) in comparison to theoretical expectations, and further improved the performance of the RVITM-based method. With both numerical simulations and experiments, we found that the genetic algorithm offered the highest PBR but suffered from the lowest focusing speed, while the RVITM-based algorithm provided a comparable PBR to that of the genetic algorithm, and the highest focusing speed.
Original language | English |
---|---|
Article number | 420718 |
Pages (from-to) | 14269-14281 |
Number of pages | 13 |
Journal | OPTICS EXPRESS |
Volume | 29 |
Issue number | 10 |
DOIs | |
Publication status | Published - 10 May 2021 |