King's College London

Research portal

Förster Resonance Energy Transfer inside Hyperbolic Metamaterials

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)4594 - 4603
JournalACS Photonics
Volume5
Issue number11
Early online date9 Oct 2018
DOIs
Accepted/In press9 Oct 2018
E-pub ahead of print9 Oct 2018

Documents

King's Authors

Abstract

The ability to control Förster Resonance Energy Transfer (FRET) between emitters via the design of nanostructured materials with appropriate electromagnetic properties is important in the development of fast and enhanced sources of illumination, high-efficiency photovoltaic devices and biomedical applications, such as nanorulers. While the engineering of the local density of states allows an efficient control over the spontaneous emission rate, its influence on the FRET process has been an ongoing debate and has led to disparate experimental and theoretical results. In particular, hyperbolic metamaterials have recently been shown to drastically increase the fluorescence decay rate. Here, we experimentally demonstrate an increase in the FRET rate for Donor-Acceptor (D-A) pairs separated by fixed distances (3.4, 6.8 and 10.2 nm) located inside a hyperbolic metamaterial comprised of an array of gold nanorods. While the modification of the local density of states surrounding the D-A pairs strongly influences the FRET rate, leading to a 13-fold increase inside the metamaterial, the FRET efficiency is shown to remain mostly unaffected. For comparison, we also study the modification of energy transfer rates and efficiencies of D-A pairs placed on top of a gold film, on top of a nanorod-based metamaterial and inside a nanorod-based metamaterial coated with polymer in order to prevent quenching. The free-space emission intensities of the acceptor were also investigated, leading up to an 18-fold increase in the emission intensity inside the polymer coated metamaterial. The designed geometry shows great potential in the development of FRET-based applications such as biomedical imaging, organic solar-cells and light-emitting sources.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454