Abstract
Cardiovascular magnetic resonance myocardial feature tracking (CMR-FT) is a promising method for quantification of cardiac function from standard steady-state free precession (SSFP) images. However, currently available techniques require operator dependent and time-consuming manual intervention, limiting reproducibility and clinical use. In this paper, we propose a fully automated pipeline to compute left ventricular (LV) longitudinal and radial strain from 2- and 4-chamber cine acquisitions, and LV circumferential and radial strain from the short-axis imaging. The method employs a convolutional neural network to automatically segment the myocardium, followed by feature tracking and strain estimation. Experiments are performed using 40 healthy volunteers and 40 ischemic patients from the UK Biobank dataset. Results show that our method obtained strain values that were in excellent agreement with the commercially available clinical CMR-FT software CVI42 (Circle Cardiovascular Imaging, Calgary, Canada).
Original language | English |
---|---|
Title of host publication | 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018 |
Publisher | IEEE Computer Society |
Pages | 1139-1143 |
Number of pages | 5 |
Volume | 2018-April |
ISBN (Electronic) | 9781538636367 |
DOIs | |
Publication status | Published - 23 May 2018 |
Event | 15th IEEE International Symposium on Biomedical Imaging, ISBI 2018 - Washington, United States Duration: 4 Apr 2018 → 7 Apr 2018 |
Conference
Conference | 15th IEEE International Symposium on Biomedical Imaging, ISBI 2018 |
---|---|
Country/Territory | United States |
City | Washington |
Period | 4/04/2018 → 7/04/2018 |
Keywords
- Automatic pipeline
- Machine learning
- MRI
- Myocardial Strain