Generalized low-rank nonrigid motion-corrected reconstruction for MR fingerprinting

Gastao Cruz*, Haikun Qi, Olivier Jaubert, Thomas Kuestner, Torben Schneider, Rene Michael Botnar, Claudia Prieto

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Purpose: Develop a novel low-rank motion-corrected (LRMC) reconstruction for nonrigid motion-corrected MR fingerprinting (MRF). Methods: Generalized motion-corrected (MC) reconstructions have been developed for steady-state imaging. Here we extend this framework to enable nonrigid MC for transient imaging applications with varying contrast, such as MRF. This is achieved by integrating low-rank dictionary-based compression into the generalized MC model to reconstruct MC singular images, reducing motion artifacts in the resulting parametric maps. The proposed LRMC reconstruction was applied for cardiac motion correction in 2D myocardial MRF (T1 and T2) with extended cardiac acquisition window (~450 ms) and for respiratory MC in free-breathing 3D myocardial and 3D liver MRF. Experiments were performed in phantom and 22 healthy subjects. The proposed approach was compared with reference spin echo (phantom) and with 2D electrocardiogram-triggered/breath-hold MOLLI and T2 gradient-and–spin echo conventional maps (in vivo 2D and 3D myocardial MRF). Results: Phantom results were in general agreement with reference spin-echo measurements, presenting relative errors of approximately 5.4% and 5.5% for T1 and short T2 (<100 ms), respectively. The proposed LRMC MRF reduced residual blurring artifacts with respect to no MC for cardiac or respiratory motion in all cases (2D and 3D myocardial, 3D abdominal). In 2D myocardial MRF, left-ventricle T1 values were 1150 ± 41 ms for LRMC MRF and 1010 ± 56 ms for MOLLI; T2 values were 43.8 ± 2.3 ms for LRMC MRF and 49.5 ± 4.5 ms for T2 gradient and spin echo. Corresponding measurements for 3D myocardial MRF were 1085 ± 30 ms and 1062 ± 29 ms for T1, and 43.5 ± 1.9 ms and 51.7 ± 1.7 ms for T2. For 3D liver, LRMC MRF measured liver T1 at 565 ± 44 ms and liver T2 at 35.4 ± 2.4 ms. Conclusion: The proposed LRMC reconstruction enabled generalized (nonrigid) MC for 2D and 3D MRF, both for cardiac and respiratory motion. The proposed approach reduced motion artifacts in the MRF maps with respect to no motion compensation and achieved good agreement with reference measurements.

Original languageEnglish
Pages (from-to)746-763
Number of pages18
JournalMagnetic Resonance in Medicine
Volume87
Issue number2
Early online date2 Oct 2021
DOIs
Publication statusPublished - Feb 2022

Keywords

  • 2D cardiac
  • 3D cardiac
  • 3D liver
  • low rank
  • MR fingerprinting
  • nonrigid motion correction

Fingerprint

Dive into the research topics of 'Generalized low-rank nonrigid motion-corrected reconstruction for MR fingerprinting'. Together they form a unique fingerprint.

Cite this