Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways

William J. Young, Najim Lahrouchi, Aaron Isaacs, Thuy Vy Duong, Luisa Foco, Farah Ahmed, Jennifer A. Brody, Reem Salman, Raymond Noordam, Jan Walter Benjamins, Jeffrey Haessler, Leo Pekka Lyytikäinen, Linda Repetto, Maria Pina Concas, Marten E. van den Berg, Stefan Weiss, Antoine R. Baldassari, Traci M. Bartz, James P. Cook, Daniel S. EvansRebecca Freudling, Oliver Hines, Jonas L. Isaksen, Honghuang Lin, Hao Mei, Arden Moscati, Martina Müller-Nurasyid, Casia Nursyifa, Yong Qian, Anne Richmond, Carolina Roselli, Kathleen A. Ryan, Eduardo Tarazona-Santos, Sébastien Thériault, Stefan van Duijvenboden, Helen R. Warren, Jie Yao, Dania Raza, Stefanie Aeschbacher, Gustav Ahlberg, Alvaro Alonso, Laura Andreasen, Joshua C. Bis, Eric Boerwinkle, Archie Campbell, Eulalia Catamo, Massimiliano Cocca, Michael J. Cutler, Dawood Darbar, Michele Orini

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.

Original languageEnglish
Article number5144
JournalNature Communications
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2022

Fingerprint

Dive into the research topics of 'Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways'. Together they form a unique fingerprint.

Cite this