TY - JOUR
T1 - Genetic and real-world clinical data, combined with empirical validation, nominate jak-stat signaling as a target for Alzheimer’s disease therapeutic development
AU - NIMA Consortium
AU - Nevado-Holgado, Alejo J.
AU - Ribe, Elena
AU - Thei, Laura
AU - Furlong, Laura
AU - Mayer, Miguel Angel
AU - Quan, Jie
AU - Richardson, Jill C.
AU - Cavanagh, Jonathan
AU - Lovestone, Simon
AU - Bullmore, Edward T.
AU - Bhatti, Junaid
AU - Chamberlain, Samuel J.
AU - Correia, Marta M.
AU - Dickinson, Amber
AU - Foster, Andy
AU - Kitzbichler, Manfred
AU - Knight, Clare
AU - Lynall, Mary Ellen
AU - Maurice, Christina
AU - Mount, Howard
AU - O’Donnell, Ciara
AU - Pointon, Linda J.
AU - Hyslop, Peter St George
AU - Turner, Lorinda
AU - Widmer, Barry
AU - Williams, Guy B.
AU - Morgan, B. Paul
AU - Leckey, Claire
AU - Morgan, Angharad
AU - O’Hagan, Caroline
AU - Touchard, Samuel
AU - Deith, Catherine
AU - McClean, John
AU - McColl, Alison
AU - McPherson, Andrew
AU - Scouller, Paul
AU - Sutherland, Murray
AU - Boddeke, H. W.G.M.Erik
AU - Pariante, Carmine
AU - Cash, Diana
AU - Mariani, Nicole
AU - Nettis, Maria
AU - Nikkheslat, Naghmeh
AU - Sheridan, Hannah
AU - Turkheimer, Federico
AU - Loo, Victoria Van
AU - Wood, Tobias
AU - Worrell, Courtney
AU - Zajkowska, Zuzanna
AU - Baird, Alison
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/5
Y1 - 2019/5
N2 - As genome-wide association studies (GWAS) have grown in size, the number of genetic variants that have been associated per disease has correspondingly increased. Despite this increase in the number of single-nucleotide polymorphisms (SNPs) identified per disease, their biological interpretation has in many cases remained elusive. To address this, we have combined GWAS results with orthogonal sources of evidence, namely the current knowledge of molecular pathways; real-world clinical data from six million patients; RNA expression across tissues from Alzheimer’s disease (AD) patients, and purpose-built rodent models for experimental validation. In more detail, first we show that when examined at a pathway level, analysis of all GWAS studies groups AD in a cluster with disorders of immunity and inflammation. Using clinical data, we show that the degree of comorbidity of these diseases with AD correlates with the strength of their genetic association with molecular participants in the Janus kinases/signal transducer and activator of transcription (JAK-STAT) pathway. Using four independent RNA expression datasets we then find evidence for the altered regulation of JAK-STAT pathway genes in AD. Finally, we use both in vitro and in vivo rodent models to demonstrate that Aβ induces gene expression of the key drivers of this pathway, providing experimental evidence to validate these data-driven observations. These results therefore nominate JAK-STAT anomalies as a prominent aetiopathological event in AD and hence a potential target for therapeutic development, and moreover demonstrate a de novo multi-modal approach to derive information from rapidly increasing genomic datasets.
AB - As genome-wide association studies (GWAS) have grown in size, the number of genetic variants that have been associated per disease has correspondingly increased. Despite this increase in the number of single-nucleotide polymorphisms (SNPs) identified per disease, their biological interpretation has in many cases remained elusive. To address this, we have combined GWAS results with orthogonal sources of evidence, namely the current knowledge of molecular pathways; real-world clinical data from six million patients; RNA expression across tissues from Alzheimer’s disease (AD) patients, and purpose-built rodent models for experimental validation. In more detail, first we show that when examined at a pathway level, analysis of all GWAS studies groups AD in a cluster with disorders of immunity and inflammation. Using clinical data, we show that the degree of comorbidity of these diseases with AD correlates with the strength of their genetic association with molecular participants in the Janus kinases/signal transducer and activator of transcription (JAK-STAT) pathway. Using four independent RNA expression datasets we then find evidence for the altered regulation of JAK-STAT pathway genes in AD. Finally, we use both in vitro and in vivo rodent models to demonstrate that Aβ induces gene expression of the key drivers of this pathway, providing experimental evidence to validate these data-driven observations. These results therefore nominate JAK-STAT anomalies as a prominent aetiopathological event in AD and hence a potential target for therapeutic development, and moreover demonstrate a de novo multi-modal approach to derive information from rapidly increasing genomic datasets.
KW - Alzheimer
KW - Animal models
KW - Genomics
KW - JAK-STAT
KW - Multimodal
KW - Transcriptomics
UR - http://www.scopus.com/inward/record.url?scp=85081711793&partnerID=8YFLogxK
U2 - 10.3390/cells8050425
DO - 10.3390/cells8050425
M3 - Article
AN - SCOPUS:85081711793
SN - 2073-4409
VL - 8
JO - Cells
JF - Cells
IS - 5
M1 - 425
ER -