Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk

Georg B Ehret, Patricia B Munroe, Kenneth M Rice, Murielle Bochud, Andrew D Johnson, Daniel I Chasman, Albert V Smith, Martin D Tobin, Germaine C Verwoert, Shih-Jen Hwang, Vasyl Pihur, Peter Vollenweider, Paul O'Reilly, Najaf Amin, Jennifer L Bragg-Gresham, Alexander Teumer, Nicole L Glazer, Lenore Launer, Jing Hua Zhao, Yurii AulchenkoSimon Heath, Siim Sõber, Afshin Parsa, Jian'an Luan, Pankaj Arora, Abbas Dehghan, Feng Zhang, Gavin Lucas, Andrew A Hicks, Anne U Jackson, John F Peden, Toshiko Tanaka, Sarah H Wild, Igor Rudan, Wilmar Igl, Yuri Milaneschi, Alex N Parker, Cristiano Fava, John C Chambers, Ervin R Fox, Meena Kumari, Min Jin Go, Pim van der Harst, Wen Hong Linda Kao, Andrew Wong, Tim D Spector, Guangju Zhai, Richard W Morris, James F Wilson, International Consortium for Blood Pressure Genome-Wide Association Studies, Maria Hernandez Fuentes

Research output: Contribution to journalArticlepeer-review

1700 Citations (Scopus)

Abstract

Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
Original languageEnglish
Article numberN/A
Pages (from-to)103-109
Number of pages7
JournalNATURE
Volume478
Issue number7367
DOIs
Publication statusPublished - 6 Oct 2011

Keywords

  • Africa
  • Asia
  • Blood Pressure
  • Cardiovascular Diseases
  • Coronary Artery Disease
  • Europe
  • Genetic Predisposition to Disease
  • Genome-Wide Association Study
  • Humans
  • Hypertension
  • Kidney Diseases
  • Polymorphism, Single Nucleotide
  • Stroke

Fingerprint

Dive into the research topics of 'Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk'. Together they form a unique fingerprint.

Cite this