TY - JOUR
T1 - Genome-wide regulatory analysis reveals that T-bet controls Th17 lineage differentiation through direct suppression of IRF4
AU - Gökmen, M. Refik
AU - Dong, Rong
AU - Kanhere, Aditi
AU - Powell, Nick
AU - Perucha, Esperanza
AU - Jackson, Ian
AU - Howard, Jane K.
AU - Hernandez-Fuentes, Maria
AU - Jenner, Richard G.
AU - Lord, Graham M.
PY - 2013
Y1 - 2013
N2 - The complex relationship between Th1 and Th17 cells is incompletely understood. The transcription factor T-bet is best known as the master regulator of Th1 lineage commitment. However, attention is now focused on the repression of alternate T cell subsets mediated by T-bet, particularly the Th17 lineage. It has recently been suggested that pathogenic Th17 cells express T-bet and are dependent on IL-23. However, T-bet has previously been shown to be a negative regulator of Th17 cells. We have taken an unbiased approach to determine the functional impact of T-bet on Th17 lineage commitment. Genome-wide analysis of functional T-bet binding sites provides an improved understanding of the transcriptional regulation mediated by T-bet, and suggests novel mechanisms by which T-bet regulates Th cell differentiation. Specifically, we show that T-bet negatively regulates Th17 lineage commitment via direct repression of the transcription factor IFN regulatory factor-4 (IRF4). An in vivo analysis of the pathogenicity of T-bet-deficient T cells demonstrated that mucosal Th17 responses were augmented in the absence of T-bet, and we have demonstrated that the roles of T-bet in enforcing Th1 responses and suppressing Th17 responses are separable. The interplay of the two key transcription factors T-bet and IRF4 during the determination of T cell fate choice significantly advances our understanding of the mechanisms underlying the development of pathogenic T cells.
AB - The complex relationship between Th1 and Th17 cells is incompletely understood. The transcription factor T-bet is best known as the master regulator of Th1 lineage commitment. However, attention is now focused on the repression of alternate T cell subsets mediated by T-bet, particularly the Th17 lineage. It has recently been suggested that pathogenic Th17 cells express T-bet and are dependent on IL-23. However, T-bet has previously been shown to be a negative regulator of Th17 cells. We have taken an unbiased approach to determine the functional impact of T-bet on Th17 lineage commitment. Genome-wide analysis of functional T-bet binding sites provides an improved understanding of the transcriptional regulation mediated by T-bet, and suggests novel mechanisms by which T-bet regulates Th cell differentiation. Specifically, we show that T-bet negatively regulates Th17 lineage commitment via direct repression of the transcription factor IFN regulatory factor-4 (IRF4). An in vivo analysis of the pathogenicity of T-bet-deficient T cells demonstrated that mucosal Th17 responses were augmented in the absence of T-bet, and we have demonstrated that the roles of T-bet in enforcing Th1 responses and suppressing Th17 responses are separable. The interplay of the two key transcription factors T-bet and IRF4 during the determination of T cell fate choice significantly advances our understanding of the mechanisms underlying the development of pathogenic T cells.
UR - http://www.scopus.com/inward/record.url?scp=84890418697&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1202254
DO - 10.4049/jimmunol.1202254
M3 - Article
AN - SCOPUS:84890418697
SN - 0022-1767
VL - 191
SP - 5925
EP - 5932
JO - Journal of Immunology
JF - Journal of Immunology
IS - 12
ER -