King's College London

Research portal

Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence

Research output: Contribution to journalArticle

Suzanne Sniekers, Sven Stringer, Kyoko Watanabe, Philip R Jansen, Jonathan Coleman, Eva Krapohl, Erdogan Taskesen, Anke R Hammerschlag, Aysu Okbay, Delilah Zabaneh, Najaf Amin, Gerome Breen, David Cesarini, Christopher F Chabris, William G Iacono, M Arfan Ikram, Magnus Johannesson, Philipp Koellinger, James J Lee, Patrik K E Magnusson & 10 others Matt McGue, Mike B Miller, William E R Ollier, Antony Payton, Neil Pendleton, Robert Plomin, Cornelius A Rietveld, Henning Tiemeier, Cornelia M van Duijn, Danielle Posthuma

Original languageEnglish
JournalNature Genetics
DOIs
Publication statusPublished - 22 May 2017

Documents

  • Sniekers_IQ_ms_rev

    Sniekers_IQ_ms_rev.pdf, 3 MB, application/pdf

    31/12/2017

    Accepted author manuscript

    Other

King's Authors

Abstract

Intelligence is associated with important economic and health-related life outcomes. Despite intelligence having substantial heritability (0.54) and a confirmed polygenic nature, initial genetic studies were mostly underpowered. Here we report a meta-analysis for intelligence of 78,308 individuals. We identify 336 associated SNPs (METAL P < 5 × 10(-8)) in 18 genomic loci, of which 15 are new. Around half of the SNPs are located inside a gene, implicating 22 genes, of which 11 are new findings. Gene-based analyses identified an additional 30 genes (MAGMA P < 2.73 × 10(-6)), of which all but one had not been implicated previously. We show that the identified genes are predominantly expressed in brain tissue, and pathway analysis indicates the involvement of genes regulating cell development (MAGMA competitive P = 3.5 × 10(-6)). Despite the well-known difference in twin-based heratiblity for intelligence in childhood (0.45) and adulthood (0.80), we show substantial genetic correlation (rg = 0.89, LD score regression P = 5.4 × 10(-29)). These findings provide new insight into the genetic architecture of intelligence.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454