King's College London

Research portal

Genome-wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer's disease

Research output: Contribution to journalArticle

S. J. Furney, A. Simmons, G. Breen, I. Pedroso, K. Lunnon, P. Proitsi, A. Hodges, J. Powell, L-O Wahlund, I. Kloszewska, P. Mecocci, H. Soininen, M. Tsolaki, B. Vellas, C. Spenger, M. Lathrop, L. Shen, S. Kim, A. J. Saykin, M. W. Weiner & 2 more S. Lovestone, AddNeuroMed Consortium, Alzheimer's Dis Neuroimaging

Original languageEnglish
Pages (from-to)1130-1138
Number of pages9
JournalMolecular Psychiatry
Volume16
Issue number11
Early online date30 Nov 2010
DOIs
Publication statusPublished - Nov 2011

King's Authors

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with considerable evidence suggesting an initiation of disease in the entorhinal cortex and hippocampus and spreading thereafter to the rest of the brain. In this study, we combine genetics and imaging data obtained from the Alzheimer's Disease Neuroimaging Initiative and the AddNeuroMed study. To identify genetic susceptibility loci for AD, we conducted a genome-wide study of atrophy in regions associated with neurodegeneration in this condition. We identified one single-nucleotide polymorphism (SNP) with a disease-specific effect associated with entorhinal cortical volume in an intron of the ZNF292 gene (rs1925690; P-value=2.6 × 10(-8); corrected P-value for equivalent number of independent quantitative traits=7.7 × 10(-8)) and an intergenic SNP, flanking the ARPP-21 gene, with an overall effect on entorhinal cortical thickness (rs11129640; P-value=5.6 × 10(-8); corrected P-value=1.7 × 10(-7)). Gene-wide scoring also highlighted PICALM as the most significant gene associated with entorhinal cortical thickness (P-value=6.7 × 10(-6)).

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454