Goal-conditioned reinforcement learning for ultrasound navigation guidance

Abdoul Aziz Amadou, Vivek Singh, Florin Ghesu, Young-Ho Kim, Laura Stanciulescu , Harshitha Sai, Puneet Sharma, Alistair Young, Ronak Rajani, Kawal Rhode

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

Abstract

Transesophageal echocardiography (TEE) plays a pivotal role
in cardiology for diagnostic and interventional procedures. However, us-
ing it effectively requires extensive training due to the intricate nature of
image acquisition and interpretation. To enhance the efficiency of novice
sonographers and reduce variability in scan acquisitions, we propose a
novel ultrasound (US) navigation assistance method based on contrastive
learning as goal-conditioned reinforcement learning (GCRL). We aug-
ment the previous framework using a novel contrastive patient batching
method (CPB) and a data-augmented contrastive loss, both of which we
demonstrate are essential to ensure generalization to anatomical vari-
ations across patients. The proposed framework enables navigation to
both standard diagnostic as well as intricate interventional views with
a single model. Our method was developed with a large dataset of 789
patients and obtained an average error of 6.56 mm in position and 9.36
degrees in angle on a testing dataset of 140 patients, which is competi-
tive or superior to models trained on individual views. Furthermore, we
quantitatively validate our method’s ability to navigate to interventional
views such as the Left Atrial Appendage (LAA) view used in LAA clo-
sure. Our approach holds promise in providing valuable guidance during
transesophageal ultrasound examinations, contributing to the advance-
ment of skill acquisition for cardiac ultrasound practitioners
Original languageEnglish
Title of host publicationGoal-conditioned reinforcement learning for ultrasound navigation guidance
PublisherMedical Image Computing and Computer Assisted Intervention – MICCAI
Publication statusAccepted/In press - 2024

Fingerprint

Dive into the research topics of 'Goal-conditioned reinforcement learning for ultrasound navigation guidance'. Together they form a unique fingerprint.

Cite this