King's College London

Research portal

GPU-based 3D iceball modeling for fast cryoablation simulation and planning

Research output: Contribution to journalArticlepeer-review

Ehsan Golkar, Pramod P. Rao, Leo Joskowicz, Afshin Gangi, Caroline Essert

Original languageEnglish
Pages (from-to)1577-1588
JournalInternational Journal of Computer Assisted Radiology and Surgery
Volume14
Issue number9
Early online date12 Aug 2019
DOIs
Accepted/In press5 Aug 2019
E-pub ahead of print12 Aug 2019
Published1 Sep 2019

Documents

King's Authors

Abstract

Purpose
The elimination of abdominal tumors by percutaneous cryoablation has been shown to be an effective and less invasive alternative to open surgery. Cryoablation destroys malignant cells by freezing them with one or more cryoprobes inserted into the tumor through the skin. Alternating cycles of freezing and thawing produce an enveloping iceball that causes the tumor necrosis. Planning such a procedure is difficult and time-consuming, as it is necessary to plan the number and cryoprobe locations and predict the iceball shape which is also influenced by the presence of heating sources, e.g., major blood vessels and warm saline solution, injected to protect surrounding structures from the cold.

Methods
This paper describes a method for fast GPU-based iceball modeling based on the simulation of thermal propagation in the tissue. Our algorithm solves the heat equation within a cube around the cryoprobes tips and accounts for the presence of heating sources around the iceball.

Results
Experimental results of two studies have been obtained: an ex vivo warm gel setup and simulation on five retrospective patient cases of kidney tumors cryoablation with various levels of complexity of the vascular structure and warm saline solution around the tumor tissue. The experiments have been conducted in various conditions of cube size and algorithm implementations. Results show that it is possible to obtain an accurate result within seconds.

Conclusion
The promising results indicate that our method yields accurate iceball shape predictions in a short time and is suitable for surgical planning.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454