King's College London

Research portal

Graphene-Like Covalent Organic Framework with a Wide Band Gap Synthesized On Surface via Stepwise Reactions

Research output: Contribution to journalArticlepeer-review

Guoqiang Shi, Junfeng Zhou, Zhuo Li, Ye Sun, Lev N. Kantorovich, Qiang Fang, Flemming Besenbacher, Miao Yu

Original languageEnglish
Pages (from-to)15958-15962
Number of pages5
Issue number37
Accepted/In press1 Jan 2020
Published7 Sep 2020

King's Authors


Developing graphene-like two-dimensional materials naturally possessing a band gap has sparked enormous interest. Thanks to the inherent wide band gap and high mobility in the 2D plane, covalent organic frameworks containing triazine rings (t-COFs) hold great promise in this regard, whilst the synthesis of single-layer t-COFs remains highly challenging. Herein, we present the fabrication of a well-defined graphene-like t-COF on Au(111). Instead of single/multiple-step single-type reactions commonly applied for on-surface synthesis, distinct stepwise on-surface reactions, including alkynyl cyclotrimerization, C−O bond cleavage, and C−H bond activation, are triggered on demand, leading to product evolution in a controlled step-by-step manner. Aside from the precise control in sophisticated on-surface synthesis, this work proposes a single-atomic-layer organic semiconductor with a wide band gap of 3.41 eV.

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454