King's College London

Research portal

Heuristic voting as ordinal dominance strategies

Research output: Chapter in Book/Report/Conference proceedingConference paper

Omer Lev, Reshef Meir, Svetlana Obraztsova, Maria Polukarov

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI Press
Pages2077-2084
Number of pages8
ISBN (Electronic)9781577358091
Publication statusPublished - 1 Jan 2019
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
CountryUnited States
CityHonolulu
Period27/01/20191/02/2019

King's Authors

Abstract

Decision making under uncertainty is a key component of many AI settings, and in particular of voting scenarios where strategic agents are trying to reach a joint decision. The common approach to handle uncertainty is by maximizing expected utility, which requires a cardinal utility function as well as detailed probabilistic information. However, often such probabilities are not easy to estimate or apply. To this end, we present a framework that allows for “shades of gray” of likelihood without probabilities. Specifically, we create a hierarchy of sets of world states based on a prospective poll, with inner sets contain more likely outcomes. This hierarchy of likelihoods allows us to define what we term ordinally-dominated strategies. We use this approach to justify various known voting heuristics as bounded-rational strategies.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454