Holocephalan (Chondrichthyes) dental plates with hypermineralized dentine as a substitute for missing teeth through developmental plasticity

Moya Smith, Esther Manzanares, Charlie Underwood, Chris Healy, Brett Clark, Zerina Johanson

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
73 Downloads (Pure)

Abstract

All extant holocephalans (Chimaeroidei) have lost the ability to make individual teeth, as tooth germs are not part of the embryonic development of the dental plates or of their continuous growth. Instead, a hypermineralized dentine with a unique mineral, whitlockin, is specifically distributed within a dentine framework into structures that give the dental plates their distinctive, species-specific morphology. Control of the regulation of this distribution must be cellular, with a dental epithelium initiating the first outer dentine, and via contact with ectomesenchymal tissue as the only embryonic cell type that can make dentine. Chimaeroids have three pairs of dental plates within their mouth, two in the upper jaw and one in the lower. In the genera Chimaera, Hydrolagus and Harriotta, the morphology and distribution of this whitlockin within each dental plate differs both between different plates in the same species and between species. Whitlockin structures include ovoids, rods and tritoral pads, with substantial developmental changes between these. For example, rods appear before the ovoids and result from a change in the surrounding trabecular dentine. In Harriotta, ovoids form separately from the tritoral pads, but also contribute to tritor development, while in Chimaera and Hydrolagus, tritoral pads develop from rods that later are perforated to accommodate the vasculature. Nevertheless, the position of these structures, secreted by the specialized odontoblasts (whitloblasts), appears highly regulated in all three species. These distinct morphologies are established at the aboral margin of the dental plate, with proposed involvement of the outer dentine. We observe that this outer layer forms into serially added lingual ridges, occurring on the anterior plate only. We propose that positional, structural specificity must be contained within the ectomesenchymal populations, as stem cells below the dental epithelium, and a coincidental occurrence of each lingual, serial ridge with the whitlockin structures that contribute to the wear-resistant oral surface.

Original languageEnglish
Pages (from-to)16-27
Number of pages12
JournalJOURNAL OF FISH BIOLOGY
Volume97
Issue number1
Early online date2 Mar 2020
DOIs
Publication statusPublished - 1 Jul 2020

Keywords

  • Chimaeroidei
  • Holocephali
  • dentine
  • dentition
  • development
  • whitlockin

Fingerprint

Dive into the research topics of 'Holocephalan (Chondrichthyes) dental plates with hypermineralized dentine as a substitute for missing teeth through developmental plasticity'. Together they form a unique fingerprint.

Cite this