King's College London

Research portal

Hydrogenase biomimics containing redox-active ligands: Fe2(CO)4(μ-edt)(κ2-bpcd) with electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) as a potential [Fe4–S4]H surrogate

Research output: Contribution to journalArticle

Standard

Hydrogenase biomimics containing redox-active ligands: Fe2(CO)4(μ-edt)(κ2-bpcd) with electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) as a potential [Fe4–S4]H surrogate. / Ghosh, Shishir; Hollingsworth, Nathan; Warren, Mark; Hrovat, David A.; Richmond, Michael G.; Hogarth, Graeme.

In: Dalton Transactions, Vol. 48, No. 18, 14.05.2019, p. 6051-6060.

Research output: Contribution to journalArticle

Harvard

Ghosh, S, Hollingsworth, N, Warren, M, Hrovat, DA, Richmond, MG & Hogarth, G 2019, 'Hydrogenase biomimics containing redox-active ligands: Fe2(CO)4(μ-edt)(κ2-bpcd) with electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) as a potential [Fe4–S4]H surrogate', Dalton Transactions, vol. 48, no. 18, pp. 6051-6060. https://doi.org/10.1039/C8DT04906H

APA

Ghosh, S., Hollingsworth, N., Warren, M., Hrovat, D. A., Richmond, M. G., & Hogarth, G. (2019). Hydrogenase biomimics containing redox-active ligands: Fe2(CO)4(μ-edt)(κ2-bpcd) with electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) as a potential [Fe4–S4]H surrogate. Dalton Transactions, 48(18), 6051-6060. https://doi.org/10.1039/C8DT04906H

Vancouver

Ghosh S, Hollingsworth N, Warren M, Hrovat DA, Richmond MG, Hogarth G. Hydrogenase biomimics containing redox-active ligands: Fe2(CO)4(μ-edt)(κ2-bpcd) with electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) as a potential [Fe4–S4]H surrogate. Dalton Transactions. 2019 May 14;48(18):6051-6060. https://doi.org/10.1039/C8DT04906H

Author

Ghosh, Shishir ; Hollingsworth, Nathan ; Warren, Mark ; Hrovat, David A. ; Richmond, Michael G. ; Hogarth, Graeme. / Hydrogenase biomimics containing redox-active ligands: Fe2(CO)4(μ-edt)(κ2-bpcd) with electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) as a potential [Fe4–S4]H surrogate. In: Dalton Transactions. 2019 ; Vol. 48, No. 18. pp. 6051-6060.

Bibtex Download

@article{98dee74ed6d448499adf218a04b250d2,
title = "Hydrogenase biomimics containing redox-active ligands: Fe2(CO)4(μ-edt)(κ2-bpcd) with electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) as a potential [Fe4–S4]H surrogate",
abstract = "[FeFe]-hydrogenases contain strongly electronically coupled diiron [2Fe]H and tetrairon [Fe4–S4]H clusters, and thus much recent effort has focused on the chemistry of diiron-dithiolate biomimics with appended redox-active ligands. Here we report on the synthesis and electrocatalytic activity of Fe2(CO)4(μ-edt)(κ2-bpcd) (2) in which the electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) acts as a surrogate of the [Fe4–S4]H sub-cluster. The complex is prepared in low yield but has been fully characterised, including a crystallographic study which shows that the diphosphine adopts a basal-apical coordination geometry in the solid state. Cyclic voltammetry shows that 2 undergoes four reduction events with DFT studies confirming that the first reduction is localised on the low-lying π* system of the diphosphine ligand. The addition of the second electron furnishes a triplet dianion that exhibits spin density distributed over the diphosphine and diiron subunits. Protonation at the Fe–Fe bond of the triplet dianion furnishes the corresponding bridging hydride as the thermodynamically favoured species that contains a reduced bpcd ligand. Complex 2 functions as a catalyst for proton-reduction at its second reduction potential, in contrast to the related 2,3-bis(diphenylphosphino)maleic anhydride (bma) complex, Fe2(CO)4(μ-pdt)(κ2-bma) (1), which shows similar electrochemical behaviour but is not catalytically active. The difference in chemical behaviour is attributed to greater stability of the 4-cyclopenten-1,3-dione platform in 2 as compared to the maleic anhydride ring of the bma ligand in 1 following the uptake of the second electron. Thus protonation of the Fe–Fe bond in the 22− affords a species which is stable enough to undergo a further reduction–protonation event, unlike the bma ligand whose maleic anhydride ring undergoes deleterious C–O bond scission upon protonation or reaction with adventitious moisture. DFT studies, however, suggest that electron-transfer from the diphosphine to the diiron centre is not significant, probably due to their poor redox levelling. Thus, while the diphosphine is readily reduced, the added electron is apparently not utilised in proton-reduction and hence cannot truly be considered as an [Fe4–S4]H surrogate.",
author = "Shishir Ghosh and Nathan Hollingsworth and Mark Warren and Hrovat, {David A.} and Richmond, {Michael G.} and Graeme Hogarth",
year = "2019",
month = may,
day = "14",
doi = "10.1039/C8DT04906H",
language = "English",
volume = "48",
pages = "6051--6060",
journal = "Dalton transactions (Cambridge, England : 2003)",
issn = "1477-9226",
number = "18",

}

RIS (suitable for import to EndNote) Download

TY - JOUR

T1 - Hydrogenase biomimics containing redox-active ligands: Fe2(CO)4(μ-edt)(κ2-bpcd) with electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) as a potential [Fe4–S4]H surrogate

AU - Ghosh, Shishir

AU - Hollingsworth, Nathan

AU - Warren, Mark

AU - Hrovat, David A.

AU - Richmond, Michael G.

AU - Hogarth, Graeme

PY - 2019/5/14

Y1 - 2019/5/14

N2 - [FeFe]-hydrogenases contain strongly electronically coupled diiron [2Fe]H and tetrairon [Fe4–S4]H clusters, and thus much recent effort has focused on the chemistry of diiron-dithiolate biomimics with appended redox-active ligands. Here we report on the synthesis and electrocatalytic activity of Fe2(CO)4(μ-edt)(κ2-bpcd) (2) in which the electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) acts as a surrogate of the [Fe4–S4]H sub-cluster. The complex is prepared in low yield but has been fully characterised, including a crystallographic study which shows that the diphosphine adopts a basal-apical coordination geometry in the solid state. Cyclic voltammetry shows that 2 undergoes four reduction events with DFT studies confirming that the first reduction is localised on the low-lying π* system of the diphosphine ligand. The addition of the second electron furnishes a triplet dianion that exhibits spin density distributed over the diphosphine and diiron subunits. Protonation at the Fe–Fe bond of the triplet dianion furnishes the corresponding bridging hydride as the thermodynamically favoured species that contains a reduced bpcd ligand. Complex 2 functions as a catalyst for proton-reduction at its second reduction potential, in contrast to the related 2,3-bis(diphenylphosphino)maleic anhydride (bma) complex, Fe2(CO)4(μ-pdt)(κ2-bma) (1), which shows similar electrochemical behaviour but is not catalytically active. The difference in chemical behaviour is attributed to greater stability of the 4-cyclopenten-1,3-dione platform in 2 as compared to the maleic anhydride ring of the bma ligand in 1 following the uptake of the second electron. Thus protonation of the Fe–Fe bond in the 22− affords a species which is stable enough to undergo a further reduction–protonation event, unlike the bma ligand whose maleic anhydride ring undergoes deleterious C–O bond scission upon protonation or reaction with adventitious moisture. DFT studies, however, suggest that electron-transfer from the diphosphine to the diiron centre is not significant, probably due to their poor redox levelling. Thus, while the diphosphine is readily reduced, the added electron is apparently not utilised in proton-reduction and hence cannot truly be considered as an [Fe4–S4]H surrogate.

AB - [FeFe]-hydrogenases contain strongly electronically coupled diiron [2Fe]H and tetrairon [Fe4–S4]H clusters, and thus much recent effort has focused on the chemistry of diiron-dithiolate biomimics with appended redox-active ligands. Here we report on the synthesis and electrocatalytic activity of Fe2(CO)4(μ-edt)(κ2-bpcd) (2) in which the electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) acts as a surrogate of the [Fe4–S4]H sub-cluster. The complex is prepared in low yield but has been fully characterised, including a crystallographic study which shows that the diphosphine adopts a basal-apical coordination geometry in the solid state. Cyclic voltammetry shows that 2 undergoes four reduction events with DFT studies confirming that the first reduction is localised on the low-lying π* system of the diphosphine ligand. The addition of the second electron furnishes a triplet dianion that exhibits spin density distributed over the diphosphine and diiron subunits. Protonation at the Fe–Fe bond of the triplet dianion furnishes the corresponding bridging hydride as the thermodynamically favoured species that contains a reduced bpcd ligand. Complex 2 functions as a catalyst for proton-reduction at its second reduction potential, in contrast to the related 2,3-bis(diphenylphosphino)maleic anhydride (bma) complex, Fe2(CO)4(μ-pdt)(κ2-bma) (1), which shows similar electrochemical behaviour but is not catalytically active. The difference in chemical behaviour is attributed to greater stability of the 4-cyclopenten-1,3-dione platform in 2 as compared to the maleic anhydride ring of the bma ligand in 1 following the uptake of the second electron. Thus protonation of the Fe–Fe bond in the 22− affords a species which is stable enough to undergo a further reduction–protonation event, unlike the bma ligand whose maleic anhydride ring undergoes deleterious C–O bond scission upon protonation or reaction with adventitious moisture. DFT studies, however, suggest that electron-transfer from the diphosphine to the diiron centre is not significant, probably due to their poor redox levelling. Thus, while the diphosphine is readily reduced, the added electron is apparently not utilised in proton-reduction and hence cannot truly be considered as an [Fe4–S4]H surrogate.

UR - http://www.scopus.com/inward/record.url?scp=85065527379&partnerID=8YFLogxK

U2 - 10.1039/C8DT04906H

DO - 10.1039/C8DT04906H

M3 - Article

VL - 48

SP - 6051

EP - 6060

JO - Dalton transactions (Cambridge, England : 2003)

JF - Dalton transactions (Cambridge, England : 2003)

SN - 1477-9226

IS - 18

ER -

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454