Identifying tinnitus in mice by tracking the motion of body markers in response to an acoustic startle

Mark N. Wallace*, Joel I. Berger, Adam Hockley, Christian J. Sumner, Michael A. Akeroyd*, Alan R. Palmer, Peter A. McNaughton*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Downloads (Pure)

Abstract

Rodent models of tinnitus are commonly used to study its mechanisms and potential treatments. Tinnitus can be identified by changes in the gap-induced prepulse inhibition of the acoustic startle (GPIAS), most commonly by using pressure detectors to measure the whole-body startle (WBS). Unfortunately, the WBS habituates quickly, the measuring system can introduce mechanical oscillations and the response shows considerable variability. We have instead used a motion tracking system to measure the localized motion of small reflective markers in response to an acoustic startle reflex in guinea pigs and mice. For guinea pigs, the pinna had the largest responses both in terms of displacement between pairs of markers and in terms of the speed of the reflex movement. Smaller, but still reliable responses were observed with markers on the thorax, abdomen and back. The peak speed of the pinna reflex was the most sensitive measure for calculating GPIAS in the guinea pig. Recording the pinna reflex in mice proved impractical due to removal of the markers during grooming. However, recordings from their back and tail allowed us to measure the peak speed and the twitch amplitude (area under curve) of reflex responses and both analysis methods showed robust GPIAS. When mice were administered high doses of sodium salicylate, which induces tinnitus in humans, there was a significant reduction in GPIAS, consistent with the presence of tinnitus. Thus, measurement of the peak speed or twitch amplitude of pinna, back and tail markers provides a reliable assessment of tinnitus in rodents.

Original languageEnglish
Article number1452450
JournalFrontiers in Neuroscience
Volume18
Early online date7 Aug 2024
DOIs
Publication statusPublished - 2024

Keywords

  • gap-induced prepulse inhibition
  • guinea pig
  • Preyer reflex
  • rodent
  • sodium salicylate

Fingerprint

Dive into the research topics of 'Identifying tinnitus in mice by tracking the motion of body markers in response to an acoustic startle'. Together they form a unique fingerprint.

Cite this