TY - JOUR
T1 - Imaging biomarker analysis of advanced multiparametric MRI for glioma grading
AU - Vamvakas, A
AU - Williams, S
AU - Theodorou, K
AU - Kapsalaki, E
AU - Fountas, K
AU - Kappas, C
AU - Vassiou, K
AU - Tsougos, I
N1 - Copyright © 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
PY - 2019/3/23
Y1 - 2019/3/23
N2 - AIMS AND OBJECTIVES: To investigate the value of advanced multiparametric MR imaging biomarker analysis based on radiomic features and machine learning classification, in the non-invasive evaluation of tumor heterogeneity towards the differentiation of Low Grade vs. High Grade Gliomas.METHODS AND MATERIALS: Forty histologically confirmed glioma patients (20 LGG and 20 HGG) who underwent a standard 3T-MRI tumor protocol with conventional (T1 pre/post-contrast, T2-FSE, T2-FLAIR) and advanced techniques (Diffusion Tensor and Perfusion Imaging, 1H-MR Spectroscopy), were included. A semi-automated segmentation technique, based on T1W-C and DTI, was used for tumor core delineation in all available parametric maps. 3D Texture analysis considered 12 Histogram, 11 Co-Occurrence Matrix (GLCM) and 5 Run Length Matrix (GLRLM) features, derived from p, q, MD, FA, T1W-C, T2W-FSE, T2W-FLAIR and raw DSCE data. Along with 1H-MRS metabolic ratios and mean rCBV values, a total of 581 attributes for each subject were obtained. A Support Vector Machine - Recursive Feature Elimination (SVM-RFE) algorithm and SVM classifier were utilized for feature selection and classification, respectively.RESULTS: Three different SVM classifiers were evaluated with consecutively SVM-RFE feature subsets. Linear SMO classifier demonstrated the highest performance for determining the optimal feature subset. Finally, 21 SVM-RFE top-ranked features were adopted, for training and testing the SMO classifier with leave-one-out cross-validation, achieving 95.5% Accuracy, 95% Sensitivity, 96% Specificity and 95.5% Area Under ROC Curve.CONCLUSION: Results demonstrate that quantitative analysis of phenotypic characteristics, based on advanced multiparametric MR neuroimaging data and texture features, utilizing state-of-the-art radiomic analysis methods, can significantly contribute to the pre-treatment glioma grade differentiation.
AB - AIMS AND OBJECTIVES: To investigate the value of advanced multiparametric MR imaging biomarker analysis based on radiomic features and machine learning classification, in the non-invasive evaluation of tumor heterogeneity towards the differentiation of Low Grade vs. High Grade Gliomas.METHODS AND MATERIALS: Forty histologically confirmed glioma patients (20 LGG and 20 HGG) who underwent a standard 3T-MRI tumor protocol with conventional (T1 pre/post-contrast, T2-FSE, T2-FLAIR) and advanced techniques (Diffusion Tensor and Perfusion Imaging, 1H-MR Spectroscopy), were included. A semi-automated segmentation technique, based on T1W-C and DTI, was used for tumor core delineation in all available parametric maps. 3D Texture analysis considered 12 Histogram, 11 Co-Occurrence Matrix (GLCM) and 5 Run Length Matrix (GLRLM) features, derived from p, q, MD, FA, T1W-C, T2W-FSE, T2W-FLAIR and raw DSCE data. Along with 1H-MRS metabolic ratios and mean rCBV values, a total of 581 attributes for each subject were obtained. A Support Vector Machine - Recursive Feature Elimination (SVM-RFE) algorithm and SVM classifier were utilized for feature selection and classification, respectively.RESULTS: Three different SVM classifiers were evaluated with consecutively SVM-RFE feature subsets. Linear SMO classifier demonstrated the highest performance for determining the optimal feature subset. Finally, 21 SVM-RFE top-ranked features were adopted, for training and testing the SMO classifier with leave-one-out cross-validation, achieving 95.5% Accuracy, 95% Sensitivity, 96% Specificity and 95.5% Area Under ROC Curve.CONCLUSION: Results demonstrate that quantitative analysis of phenotypic characteristics, based on advanced multiparametric MR neuroimaging data and texture features, utilizing state-of-the-art radiomic analysis methods, can significantly contribute to the pre-treatment glioma grade differentiation.
KW - Glioma grading
KW - Machine learning
KW - Multiparametric MRI
KW - Radiomics
UR - http://www.scopus.com/inward/record.url?scp=85063205125&partnerID=8YFLogxK
U2 - 10.1016/j.ejmp.2019.03.014
DO - 10.1016/j.ejmp.2019.03.014
M3 - Article
C2 - 30910431
SN - 1120-1797
VL - 60
SP - 188
EP - 198
JO - Physica Medica
JF - Physica Medica
ER -